Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Berkeley, CA : Apress
    UID:
    b3kat_BV046325526
    Umfang: 1 Online-Ressource (XXVIII, 275 Seiten) , 43 Illustrationen
    ISBN: 9781484251041
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-1-4842-5103-4
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-1-4842-5105-8
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Datenbankverwaltung
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Berkeley, CA :Apress :
    UID:
    almafu_9959768565202883
    Umfang: 1 online resource (289 pages)
    Ausgabe: 1st ed. 2020.
    ISBN: 9781484251041 , 1484251040
    Inhalt: Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. You will: Develop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products.
    Anmerkung: Includes index. , Part I. Getting Started -- 1. The Problem with Data Science -- 2. Data Strategy -- Part II. Toward DataOps -- 3. Lean Thinking -- 4. Agile Collaboration -- 5. Build Feedback and Measurement -- Part III. Further Steps -- 6. Building Trust -- 7. DevOps for DataOps -- 8. Organizing for DataOps -- Part IV. The Self-Service Organization -- 9. DataOps Technology -- 10. The DataOps Factory.
    Weitere Ausg.: ISBN 9781484251034
    Weitere Ausg.: ISBN 1484251032
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Berkeley, CA :Apress :
    UID:
    almahu_9948218875602882
    Umfang: XXVIII, 275 p. 43 illus. , online resource.
    Ausgabe: 1st ed. 2020.
    ISBN: 9781484251041
    Inhalt: Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. You will: Develop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products.
    Anmerkung: Part I. Getting Started -- 1. The Problem with Data Science -- 2. Data Strategy -- Part II. Toward DataOps -- 3. Lean Thinking -- 4. Agile Collaboration -- 5. Build Feedback and Measurement -- Part III. Further Steps -- 6. Building Trust -- 7. DevOps for DataOps -- 8. Organizing for DataOps -- Part IV. The Self-Service Organization -- 9. DataOps Technology -- 10. The DataOps Factory.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9781484251034
    Weitere Ausg.: Printed edition: ISBN 9781484251058
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Buch
    Buch
    New York :Apress,
    UID:
    almahu_BV047576579
    Umfang: xxviii, 275 Seiten : , Illustrationen.
    ISBN: 978-1-4842-5103-4
    Serie: For professionals by professionals
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-1-4842-5104-1
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Datenbankverwaltung
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781482251081?
Meinten Sie 9781474251044?
Meinten Sie 9781474251051?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz