Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Washington, D.C. :International Monetary Fund,
    UID:
    almafu_9960178310202883
    Umfang: 1 online resource (41 p.)
    ISBN: 9781484318973 , 1484318978 , 9781484318997 , 1484318994
    Serie: Staff Discussion Notes
    Inhalt: Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward.
    Weitere Ausg.: ISBN 9781484310908
    Weitere Ausg.: ISBN 148431090X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_1028945078
    Umfang: 1 Online-Ressource (circa 42 Seiten) , Illustrationen
    ISBN: 9781484310908
    Serie: IMF staff discussion note SDN/17, 06 (September 2017)
    Inhalt: Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Hammer, Cornelia Big Data: Potential, Challenges and Statistical Implications Washington, D.C. : International Monetary Fund, 2017 ISBN 9781484310908
    Sprache: Englisch
    Schlagwort(e): Graue Literatur
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    INTERNATIONAL MONETARY FUND
    UID:
    edoccha_9960178310202883
    Umfang: 1 online resource (41 p.)
    ISBN: 1-4843-1897-8 , 1-4843-1899-4
    Inhalt: Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward.
    Weitere Ausg.: ISBN 1-4843-1090-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    INTERNATIONAL MONETARY FUND
    UID:
    edocfu_9960178310202883
    Umfang: 1 online resource (41 p.)
    ISBN: 1-4843-1897-8 , 1-4843-1899-4
    Inhalt: Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward.
    Weitere Ausg.: ISBN 1-4843-1090-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781474410908?
Meinten Sie 9781444314908?
Meinten Sie 9781444310948?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz