UID:
almahu_9949281538202882
Umfang:
1 online resource (264 pages)
Ausgabe:
1st ed.
ISBN:
1-68015-562-8
,
1-78040-483-2
Inhalt:
Tuning Biological Nutrient Removal Plants increases interest in tuning to enhance both performance and capacity, to provide insight into typical plant operating characteristics, and to stimulate operators' interest in studying the behaviour of their own plants. The book focuses on understanding of plant behavioural characteristics so that optimum performance can be achieved and maintained. Tuning Biological Nutrient Removal Plants is carefully organized to cover: influent and effluent characteristics; process fundamentals; individual process characteristics; overall plant characteristics; the evolutionary operation approach to tuning. The approach is practical and the use of mathematics is kept to a minimum and information is supplied in graphical and tabular form. Real operating data from a wide range of plant experiences is included. The book draws on the generosity of many Australian plant owners in permitting their plant data to be incorporated. Not all process types are covered but the tuning principles expounded are universally applicable. The capacity and performance capabilities of a plant are not fixed; both are amenable to on-going enhancement through systematic and enthusiastic effort. The book will help to set new benchmarks in plant operation. Tuning Biological Nutrient Removal Plants is a valuable resource for sewage treatment operations and operations support personnel, sewage process design engineers - operating authorities, consultants, contractors, operators of industrial wastewater treatment plants and sewage treatment lecturers in chemical engineering departments and other training organisations.
Anmerkung:
Description based upon print version of record.
,
Cover -- Copyright -- Contents -- About the Authors -- Acknowledgements -- Preface -- Chapter 1: What is tuning? -- Chapter 2: Influent and effluent characteristics -- 2.1 The Catchment -- 2.2 Flow Characteristics -- 2.3 Mass Loading Characteristics -- 2.3.1 Connected population -- 2.3.2 Flow -- 2.3.3 COD -- 2.3.4 SS -- 2.3.5 pH and alkalinity -- 2.3.6 Dissolved sulfide -- 2.3.7 TDS or conductivity -- 2.3.8 Pathogens -- 2.3.9 Load ratios -- 2.3.10 COD/BOD5 -- 2.3.11 Nutrient ratios -- 2.3.12 Total COD fractions -- 2.3.13 Soluble unbiodegradable organic N -- 2.3.14 Nitrifier maximum specific growth rate -- 2.3.15 Temperature -- 2.3.16 Energy content -- 2.3.17 Other sewage components -- 2.4 Sewer Transformations -- 2.5 Effect of Primary Treatment -- 2.6 Effluent Characteristics -- Chapter 3: Biological nutrient removal - process fundamentals -- 3.1 The Basic Process -- 3.2 Kinetics of Biological Processes -- 3.2.1 Substrate utilisation -- 3.2.2 Substrate concentration -- 3.3 Solids Retention Time -- 3.3.1 Definition -- 3.3.2 Calculation -- 3.4 Carbon Removal -- 3.4.1 Effect of SRT -- 3.4.2 Loading conditions -- 3.4.3 F:M ratio -- 3.4.4 Mixed liquor suspended solids -- 3.4.5 Nutrient requirements -- 3.4.6 Carbonaceous oxygen demand -- 3.5 Nitrogen Removal -- 3.5.1 The nitrogen cycle -- 3.5.2 Nitrification -- 3.5.3 Denitrification -- 3.5.4 Simultaneous nitrification and denitrification -- 3.5.5 Total process oxygen demand -- 3.6 Phosphorus Removal -- 3.6.1 Mechanisms -- 3.6.2 Process characteristics -- 3.6.3 Adverse factors -- 3.7 Supplementary Chemical Dosing -- 3.7.1 Phosphorus removal -- 3.7.2 Nitrogen removal -- 3.7.3 Other effects -- 3.8 Alkalinity and pH -- 3.8.1 Chemistry -- 3.8.2 Process behaviour -- 3.9 Rules of Thumb -- Chapter 4: Sludge settleability -- 4.1 Characterising Settleability -- 4.2 Settling Rates.
,
4.3 Factors Affecting Settleability -- 4.3.1 Non-BNR activated sludge processes -- 4.3.2 BNR processes -- 4.4 Effect of SVI on Effluent Quality -- 4.5 Foaming -- Chapter 5: BNR flowsheets -- 5.1 Nitrogen Removal -- 5.1.1 Modified Ludzack-Ettinger (MLE) -- 5.1.2 Bardenpho -- 5.2 Phosphorus Removal -- 5.2.1 Phoredox -- 5.3 Nitrogen and Phosphorus Removal -- 5.3.1 Modified Bardenpho -- 5.3.2 Johannesburg (JHB) -- 5.3.3 University of Cape Town (UCT) -- 5.3.4 Modified UCT (MUCT) -- 5.3.5 Westbank -- 5.3.6 Membrane Bioreactor (MBR) -- Chapter 6: Reactors -- 6.1 Mixing -- 6.1.1 Mixing regime -- 6.1.2 Mixing intensity -- 6.2 Aeration -- 6.2.1 Oxygen transfer rate -- 6.2.2 Oxygen transfer efficiency -- 6.2.3 Carbon dioxide stripping -- 6.3 Compartmentalised Reactors -- 6.3.1 Description -- 6.3.2 Process characteristics -- 6.3.3 Operating principles -- 6.4 Oxidation Ditches -- 6.4.1 Description -- 6.4.2 Process characteristics -- 6.4.3 Hydraulics -- 6.4.4 Mechanical aerator characteristics -- 6.4.5 Operating principles -- 6.5 Membrane Bioreactors -- 6.5.1 Description -- 6.5.2 Process characteristics -- 6.5.3 Operating principles -- 6.6 Sequencing Batch Reactors -- 6.6.1 Description -- 6.6.2 Process characteristics -- 6.6.3 Operating principles -- Chapter 7: Secondary clarifiers -- 7.1 Description -- 7.2 Mass Balances -- 7.3 Operating Diagrams -- 7.4 Effluent Quality -- 7.4.1 Factors affecting effluent SS -- 7.4.2 Other effects of clarifiers on effluent quality -- 7.5 Clarifier Stress Testing -- Chapter 8: Sludge processes -- 8.1 Overview -- 8.2 Aerobic Digestion -- 8.2.1 Stabilisation performance -- 8.2.2 Operating characteristics -- 8.2.3 Operating examples -- 8.2.4 Operating principles -- 8.3 Sludge Dewatering -- 8.3.1 Mass balances -- 8.3.2 Belt filter press -- 8.3.3 Centrifuge -- Chapter 9: Plant characteristics -- 9.1 Mass Balances.
,
9.2 Operational Process Capacity -- 9.2.1 Bottlenecks -- 9.2.2 Failure curves -- 9.3 Capacity Envelopes -- 9.3.1 Continuous flow process -- 9.3.2 SBR process -- 9.4 Energy Consumption -- 9.4.1 Water cycle -- 9.4.2 Plant energy balance -- 9.4.3 Energy models -- 9.4.4 Tuning -- Chapter 10: Process control -- 10.1 The Role of Control and Automation -- 10.2 Disturbances -- 10.3 Control Priorities -- 10.3.1 The system -- 10.3.2 The importance of dynamics -- 10.3.3 Modelling -- 10.4 Feedback Control -- 10.4.1 Open and closed loop control -- 10.4.2 Low level control -- 10.4.3 Integral action -- 10.4.4 Derivative action -- 10.4.5 Computer realisation of the PID controller -- 10.4.6 When is PID control appropriate? -- 10.4.7 Controller tuning -- 10.4.8 Manual PI tuning -- 10.4.9 Ziegler-Nichols frequency response method -- 10.4.10 Autotuning -- 10.5 Instrumentation and Monitoring -- 10.5.1 Instruments -- 10.5.2 Estimating the oxygen uptake rate -- 10.6 Pumping -- 10.6.1 Pump characteristics -- 10.6.2 Relationship between flow rate and power -- 10.7 Essential Control Loops -- 10.7.1 Dissolved oxygen control -- 10.7.2 Ammonia-Based DO control -- 10.7.3 Recycle flow controls -- 10.7.4 Chemical precipitation -- 10.7.5 Anaerobic digestion process control -- 10.8 Minimising Operating Cost -- 10.8.1 Approaches -- 10.8.2 The human factor -- 10.9 Concluding Remarks -- Chapter 11: Evolutionary operation -- 11.1 Learning -- 11.2 Application to Sewage Treatment Plants -- 11.2.1 Plant improvement strategies -- 11.2.2 Learning curves -- 11.2.3 Startup phase -- 11.3 Long-Term Improvement -- 11.3.1 Potential -- 11.3.2 Tuning -- 11.3.3 Stress testing -- 11.3.4 Debottlenecking -- 11.3.5 Costs -- 11.4 EVOP Procedures -- 11.4.1 Method -- 11.4.2 Trend plots -- 11.4.3 General principles -- 11.5 Faux EVOP -- Appendix 1: A note on the statistics of variability -- Average and Median.
,
Percentiles -- Application -- Appendix 2: Chemicals: useful properties -- Appendix 3: Abbreviations -- References -- Index.
,
English
Weitere Ausg.:
ISBN 1-78040-482-4
Weitere Ausg.:
ISBN 1-306-41301-X
Sprache:
Englisch
Schlagwort(e):
Electronic books.
;
Electronic books.
Bookmarklink