UID:
almahu_9949530834602882
Umfang:
1 online resource (370 pages)
Ausgabe:
1st ed.
ISBN:
9781789061536
Anmerkung:
Cover -- Contents -- Preface -- Chapter 1: Integrated wastewater management for reuse in agriculture -- 1.1 INTRODUCTION -- 1.1.1 Wastewater and agriculture -- 1.1.1.1 Increasing water scarcity and stress -- 1.1.1.2 Population growth -- 1.1.1.3 Wastewater as a resource -- 1.1.2 The end-of-pipe paradigm for wastewater discharge -- 1.1.2.1 Global wastewater production, treatment, reuse, and discharge -- 1.1.2.2 Water resources and wastewater discharges -- 1.1.2.3 Global discharge of nitrogen and phosphorus -- 1.1.2.4 Energy use in mechanized wastewater treatment -- 1.1.3 The integrated wastewater management paradigm -- 1.1.3.1 Wastewater as a water resource -- 1.1.3.2 Semi-arid climates: irrigation water requirement 1500 mm/yr -- 1.1.3.3 Valorization of nutrients (N and P) in wastewater -- 1.1.3.4 Value as fertilizer, 2021 prices -- 1.1.3.5 Energy saved from fertilizer production -- 1.1.3.6 CO2,equiv emissions saved from not using synthetic fertilizers -- 1.1.3.7 Valorization of energy from anaerobic processes -- 1.2 WASTEWATER REUSE IN AGRICULTURE AND DEVELOPMENT OF END-OF-PIPE PARADIGM -- 1.2.1 Historical use of wastewater in agriculture: 3000 BCE-1915 CE -- 1.2.2 Decline of wastewater reuse with end-of-pipe paradigm: 1915-1990 -- 1.2.3 End-of-pipe paradigm with resource recovery in EU and North America: 2000-2020 -- 1.2.3.1 Secondary treatment with tertiary processes and resource recovery -- 1.2.3.2 Wastewater reuse in agriculture in the EU and the US -- 1.2.4 Wastewater treatment and resource recovery in China: 1980-2020 -- 1.2.4.1 Wastewater treatment and discharge of excess nitrogen to surface waters -- 1.2.4.2 Resource recovery in a Chinese 'concept wastewater treatment plant' -- 1.2.5 End-of-pipe paradigm in resource-limited cities/peri-urban areas: 2000-2020 -- 1.2.5.1 Indirect reuse of wastewater in agriculture.
,
1.2.5.2 Direct reuse of inadequately treated wastewater in agriculture -- 1.2.5.3 Direct reuse in agriculture with effluent wastewater meeting WHO guidelines -- 1.3 WASTEWATER TREATMENT FOR AGRICULTURAL REUSE IN RESOURCE-LIMITED REGIONS -- 1.3.1 Urban population growth -- 1.3.2 Coverage of wastewater treatment in the EU and North America -- 1.3.3 Coverage of wastewater treatment in resource-limited SDG regions -- 1.3.4 Effectiveness of wastewater treatment in resource-challenged urban areas -- 1.3.4.1 Bolivia: waste stabilization ponds and wastewater reuse -- 1.3.4.2 Honduras: pathogen reduction in waste stabilization ponds -- 1.3.4.3 Ouagadougou, Burkina Faso: protozoan cyst and helminth egg removal in the WSP system -- 1.3.4.4 Lima, Peru: Vibrio cholera reduction in the San Juan de Miraflores WSP-reuse system -- 1.3.4.5 Mendoza, Argentina: Campo Espejo waste stabilization ponds with reuse in agriculture -- 1.4 THE SUSTAINABLE DEVELOPMENT GOALS AND INTEGRATED WASTEWATER MANAGEMENT -- 1.4.1 The 2030 Agenda for Sustainable Development. -- 1.4.2 Sustainable development goals relevant for integrated wastewater management -- 1.4.2.1 Goal 2: end hunger, achieve food security, improve nutrition, promote sustainable agriculture -- 1.4.2.2 Goal: 3 ensure healthy lives and promote well-being for all ages -- 1.4.2.3 Goal 6: ensure availability and sustainable management of water and sanitation for all -- Chapter 2: Selection of natural systems for wastewater treatment with reuse in agriculture -- 2.1 INTRODUCTION -- 2.2 WASTEWATER CHARACTERISTICS AND TRADITIONAL LEVELS OF TREATMENT -- 2.2.1 Characteristics of domestic wastewater -- 2.2.1.1 Screenings and grit -- 2.2.1.2 Pathogens -- 2.2.1.3 Total suspended solids -- 2.2.1.4 Biodegradable organics -- 2.2.1.5 Nutrients -- 2.2.2 Levels of wastewater treatment.
,
2.3 PATHOGEN REDUCTION IN WASTEWATER TREATMENT PROCESSES -- 2.3.1 High-rate treatment processes -- 2.3.2 Pathogen reduction data from operating high-rate treatment systems -- 2.3.2.1 Activated sludge treatment plants without disinfection in Tunisia -- 2.3.2.2 Activated sludge treatment plant with chlorine disinfection in the US -- 2.3.2.3 Activated sludge treatment plants with microfiltration and disinfection in Spain -- 2.3.3 Natural system treatment processes -- 2.4 NATURAL SYSTEM TREATMENT PROCESSES FOR INTEGRATED WASTEWATER MANAGEMENT -- 2.4.1 Facultative.maturation pond systems -- 2.4.1.1 Simplicity -- 2.4.1.2 Land requirements -- 2.4.1.3 Low cost -- 2.4.1.4 Minimal sludge handling -- 2.4.1.5 Process complexity and operation and maintenance requirements -- 2.4.1.6 Energy consumption -- 2.4.1.7 Process stability and resilience -- 2.4.2 Anaerobic.secondary facultative.maturation pond systems -- 2.4.3 UASB.secondary facultative.maturation pond systems -- 2.4.4 UASB.trickling filter.batch stabilization reservoir -- Chapter 3: Wastewater flows, design flowrate, and flow measurement -- 3.1 SOURCES OF WASTEWATER -- 3.2 WASTEWATER FLOWS -- 3.2.1 Domestic wastewater flow and urban water consumption -- 3.2.2 Infiltration and inflow -- 3.2.3 Industrial wastewater flows -- 3.3 DESIGN FLOWRATE -- 3.3.1 Design flowrate from wastewater flow data: the ideal case -- 3.3.2 Design flowrate by equation: the non-ideal case (but most common) -- 3.4 DESIGN EXAMPLE: DESIGN FLOWRATES FOR THE CITY OF TRINIDAD, HONDURAS -- 3.5 CASE STUDY: DESIGN FLOWRATE FOR SAYLLA, PERU -- Chapter 4: Preliminary treatment -- 4.1 INTRODUCTION -- 4.2 REMOVAL OF COARSE SOLIDS: BAR SCREENS -- 4.2.1 Design of bar screens -- 4.2.2 Design equations for bar screens and approach canal -- 4.2.3 Final disposal of screenings -- 4.3 GRIT REMOVAL: DESIGN OF GRIT CHAMBERS.
,
4.3.1 Free-flow Parshall flume equations for the design of grit chambers -- 4.3.2 Design of rectangular grit chambers -- 4.4 BYPASS CHANNEL DESIGN -- 4.5 PROCEDURE FOR PRELIMINARY TREATMENT DESIGN WITH THE PARSHALL FLUME -- 4.5.1 Case study design: preliminary treatment, WSP system, Catacamas, Honduras -- 4.6 FINAL DISPOSAL OF SCREENINGS AND GRIT -- Chapter 5: Theory and design of facultative ponds -- 5.1 NATURAL PROCESSES AS THE DRIVING FORCE IN FACULTATIVE PONDS -- 5.1.1 Algal and bacterial processes in the aerobic zone -- 5.1.2 Bacterial processes in the anaerobic zone -- 5.1.3 Process analysis: methane emissions from facultative pond, Catacamas, Honduras -- 5.2 THEORY OF DESIGN OF FACULTATIVE PONDS -- 5.2.1 Maximum organic surface loading -- 5.2.1.1 Sources of solar radiation data -- 5.2.1.1.1 CLIMWAT and CROPWAT -- 5.2.1.1.2 NASA POWER data access viewer -- 5.2.1.2 Water temperature and algal growth -- 5.2.1.2.1 Design water temperature -- 5.2.1.2.2 Temperature effects on algal growth -- 5.2.1.3 Case study: surface loading and facultative pond performance, Nagpur, India -- 5.2.1.4 Case study: organic overloading of facultative ponds in Honduras -- 5.2.2 Wind effects in facultative ponds -- 5.2.3 Hydraulic considerations -- 5.2.3.1 Longitudinal dispersion -- 5.2.3.2 Thermal stratification and hydraulic short circuiting -- 5.2.3.3 Sludge accumulation effect on hydraulic short circuiting -- 5.2.4 Pathogen reduction -- 5.2.4.1 Helminth egg reduction -- 5.2.4.2 E. coli or fecal coliform reduction -- 5.2.5 BOD5 removal -- 5.2.6 TSS removal -- 5.2.7 Sludge accumulation -- 5.2.7.1 Sludge accumulation reported in the literature -- 5.2.7.2 Projection of sludge accumulation with flowrates and solids loadings -- 5.2.7.3 Design example part 1: projection of sludge accumulation for TSS = 200 mg/L.
,
5.2.7.4 Design example part 2: projection of sludge accumulation for TSS = 350 mg/L -- 5.2.7.5 Discussion of design example results -- 5.3 FACULTATIVE POND DESIGN PROCEDURE -- 5.4 DESIGN EXAMPLE: FACULTATIVE POND REDESIGN FOR AGRICULTURAL REUSE, COCHABAMBA, BOLIVIA -- Chapter 6: Theory and design of maturation ponds -- 6.1 MATURATION PONDS AND PATHOGEN REDUCTION -- 6.1.1 Factors affecting pathogen reduction -- 6.1.1.1 Sunlight -- 6.1.1.2 Temperature -- 6.1.1.3 Hydraulic retention time -- 6.1.1.4 Sedimentation -- 6.1.1.5 Predation -- 6.1.2 Design strategies for pathogen reduction -- 6.1.2.1 Sunlight exposure -- 6.1.2.2 Depth -- 6.1.2.3 Maximize theoretical hydraulic retention time and minimize dispersion -- 6.1.2.4 Longitudinal dispersion and mean hydraulic retention time -- 6.1.2.5 Residence time distribution analysis to assess longitudinal dispersion -- 6.1.2.6 Limitations of residence time distribution studies -- 6.1.2.7 Case study: residence time distribution analysis to assess fecal coliform reduction in a maturation pond, Corinne, Utah, USA -- 6.1.2.8 Determination of residence time distribution parameters -- 6.1.2.9 Estimation of fecal coliform reduction using the Wehner and Wilhem equation -- 6.1.2.10 Comment on Corinne maturation pond case study -- 6.1.2.11 Wind abatement -- 6.1.2.12 Overflow rate -- 6.1.2.13 Rock filters -- 6.2 DESIGN OF MATURATION PONDS -- 6.2.1 Unbaffled ponds -- 6.2.1.1 Hydraulic retention time -- 6.2.1.2 Depths -- 6.2.1.3 Length to width ratios -- 6.2.1.4 Inlet/outlet structures -- 6.2.1.5 Case study: unbaffled maturation ponds in series, Belo Horizonte, Brazil -- 6.2.2 Baffled ponds -- 6.2.2.1 Depths -- 6.2.2.2 Length to width ratios -- 6.2.2.3 Transverse baffle equations: baffles parallel to width -- 6.2.2.4 Longitudinal baffle equations: baffles parallel to length.
,
6.2.2.5 Design example: comparison of transverse and longitudinal baffled ponds.
Weitere Ausg.:
Print version: Oakley, Stewart Integrated Wastewater Management for Health and Valorization London : IWA Publishing,c2022
Sprache:
Englisch
Schlagwort(e):
Electronic books.
Bookmarklink