Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949602259102882
    Format: 1 online resource (298 pages)
    Edition: 1st ed.
    ISBN: 9783030022037
    Note: Intro -- Foreword -- Acknowledgements -- Contents -- Abbreviations -- Introduction -- Introduction -- 1 Machine Tool: From the Digital Twin to the Cyber-Physical Systems -- 1.1 Introduction -- 1.2 Machine Tool Digital Twin -- 1.2.1 Virtual Machining -- 1.2.2 Virtual Machine Tool -- 1.2.3 Life Cycle Features -- 1.3 Monitoring and Data Management -- 1.3.1 Local Monitoring and Data Management -- 1.3.2 Network -- 1.3.3 Data Analytics -- 1.4 Cyber-Physical Systems in Machine Tools -- 1.5 Conclusions -- References -- 2 Twin-Control Approach -- 2.1 Introduction -- 2.2 Twin-Control Architecture -- 2.2.1 Integrated Simulation Tool -- 2.2.2 Local Monitoring and Control System -- 2.2.3 Fleet-Based Knowledge System -- 2.3 Twin-Control Validation and Evaluation -- 2.4 Conclusions -- References -- Virtual Representation of the Machine Tool and Machining Processes -- 3 Virtualization of Machine Tools -- 3.1 Introduction -- 3.2 The Virtual Machine Tool Concept -- 3.2.1 Structural Model -- 3.2.2 Drive Train -- 3.2.3 Spindle Model -- 3.2.4 Modelling Principle -- 3.2.5 Control -- 3.3 Validation of the VMT -- 3.3.1 Hammer Test (Comau Machine) -- 3.3.2 Fast 1 Axis Motion (Comau Machine) -- 3.4 Conclusions -- References -- 4 Modelling of Machining Processes -- 4.1 Introduction -- 4.2 Discrete Cutting Force Model -- 4.2.1 Introduction -- 4.2.2 Discretized Force Model -- 4.2.3 Tool Cutting Forces -- 4.2.4 Part Cutting Forces -- 4.2.5 Cutting Trials -- 4.2.6 Cutting Force Model Summary -- 4.3 Stability Roadmap -- 4.3.1 Dynamic Force Model -- 4.3.2 Stability Roadmap Generation -- 4.3.3 Stability Roadmap Trials -- 4.3.4 Stability Roadmap Summary -- 4.4 Surface Location Error Model -- 4.4.1 Form Error Prediction -- 4.4.2 Surface Location Error Calculation -- 4.4.3 Surface Location Error Trials -- 4.5 Process Model Simulation Interface. , 4.5.1 Process Model GUI Layout, Inputs and Options -- 4.5.2 Process Model GUI Outputs -- 4.6 Conclusions -- References -- 5 Towards Energy-Efficient Machine Tools Through the Development of the Twin-Control Energy Efficiency Module -- 5.1 Introduction -- 5.1.1 Energy Efficiency of Production Machines -- 5.1.2 Scope of Investigation -- 5.2 Theoretical Background -- 5.2.1 Machine Simulation and Process Modelling -- 5.2.2 Energy Demand Approximation of Production Machines -- 5.2.3 Summary -- 5.3 The Energy Efficiency Module -- 5.3.1 Framework -- 5.3.2 Key Elements -- 5.4 Energy Simulation of Machine Tools -- 5.4.1 Basic Principle -- 5.4.2 Modelling the Machine Tool Components -- 5.5 Implementation on EMAG VLC100Y Turning Machine -- 5.6 Conclusions -- References -- 6 New Approach for Bearing Life Cycle Estimation and Control -- 6.1 Introduction -- 6.2 Theoretical Background -- 6.3 End-of-Life Calculation Module -- 6.4 Validation Tests -- 6.4.1 Experimental Set-up -- 6.4.2 Results -- 6.4.3 Vibration Measurements -- 6.5 Conclusions -- References -- Real Representation of the Machine Tool and Machining Processes -- 7 Data Monitoring and Management for Machine Tools -- 7.1 Introduction -- 7.2 Monitored Equipment -- 7.3 Implemented Monitoring Architecture -- 7.4 Cloud Data Management -- 7.5 Conclusions -- Reference -- 8 Behaviours Indicators of Machine Tools -- 8.1 Introduction -- 8.2 Extraction from Machining Raw Measurements -- 8.2.1 Indicator Extraction Process -- 8.2.2 Machine Operating Conditions -- 8.2.3 Indicator Processing -- 8.2.4 Example of Indicators -- 8.3 Machine Tool Characterization Tests -- 8.3.1 Diagonal Positioning Error Measurement -- 8.3.2 Artefact Measurement Using Touch Probe -- 8.3.3 Dynamic Stiffness Measurement of Tool/Part -- 8.3.4 Feed Drive and Spindle Auto-Characterization -- 8.4 Conclusions -- References. , 9 Non-intrusive Load Monitoring on Component Level of a Machine Tool Using a Kalman Filter-Based Disaggregation Approach -- 9.1 Introduction and Motivation -- 9.2 Related Work -- 9.3 Kalman Filter-Based Disaggregation Approach -- 9.3.1 NILM Through Kalman Filter-Based Power Disaggregation -- 9.3.2 Differentiation of Dynamic and Constant Electrical Power Consumers -- 9.3.3 Extension of the Kalman Filter Using Peak Shaving and Damping Factors -- 9.4 Implementation and Validation of the Presented NILM Approach -- 9.5 Conclusion and Outlook -- References -- 10 Utilizing PLC Data for Workpiece Flaw Detection in Machine Tools -- 10.1 Introduction -- 10.2 Automated Quality Monitoring Using Drive-Based Data -- 10.2.1 Information Flow and Evaluation Process -- 10.2.2 Sensitivity Analysis and Signal Processing Steps -- 10.2.3 Workpiece Flaw Detection -- 10.2.4 Evaluation and Limits of the Presented Concept -- 10.3 Influence of Tool Wear on Machine Drive-Based Signals -- 10.4 Conclusions -- References -- Integration of the Twin Concept -- 11 Simulation of Machining Operations Based on the VMT Concept -- 11.1 Introduction -- 11.2 Machining Module -- 11.3 Coupling Architecture -- 11.4 Simulation of Machining Sequences -- 11.4.1 Simple Machining Process with the High-Speed Box-in-Box Machine -- 11.4.2 Machining Process with Tool Change on a Multi-spindle Machine -- 11.4.3 Industrial Machining Process -- 11.5 Conclusions -- References -- 12 Cyber-Physical System to Improve Machining Process Performance -- 12.1 Introduction -- 12.2 Process Monitoring -- 12.3 MT Operating Condition Adaptation for Life Increase -- 12.4 Energy Monitoring System on Component Level -- 12.5 Telegram Remote Control -- 12.6 Adaptive Feed Rate Control -- 12.7 CNC Simulation and Collision Avoidance System (CAS) -- 12.8 Conclusions -- References. , 13 Fleet-Wide Proactive Maintenance of Machine Tools -- 13.1 Introduction -- 13.1.1 Fleet-Wide Approach and Industrial Challenges -- 13.1.2 Building the Fleet-Wide Approach -- 13.2 Fleet-Wide Knowledge Base Architecture -- 13.2.1 Machine Tool and Related Concepts Definition -- 13.2.2 Functional and Dysfunctional Analysis -- 13.2.3 Combination of the General Concepts and Analysis to Build Fleet-Wide Architecture -- 13.3 Maintenance Platform Services -- 13.3.1 Data Visualization Services -- 13.3.2 Event Management Services -- 13.3.3 Analysis and Investigation Service -- 13.3.4 Knowledge and Information Sharing Service -- 13.4 Conclusion -- References -- 14 Visualization of Simulated and Measured Process Data -- 14.1 Introduction -- 14.2 3D Volumetric Simulation -- 14.3 3D Simulation and Interfaces Combined -- 14.4 Additional Visualization Features -- 14.5 Conclusions -- References -- From Theory to Practice -- 15 Twin-Control Evaluation in Industrial Environment: Aerospace Use Case -- 15.1 Introduction -- 15.2 Use Case Description -- 15.3 Evaluation Strategy -- 15.4 Scenario of Use 1: Machine Tool Design -- 15.4.1 Virtual Machine Tool with Integrated Process Models -- 15.5 Scenario of Use 2: Process Design -- 15.5.1 Virtual Machine Tool with Integrated Process Models -- 15.6 Scenario of Use 3: Process Control -- 15.6.1 Local Machine Tool and Process Monitoring and Control Device -- 15.7 Scenario of Use 4: Maintenance -- 15.7.1 Fleet Management System -- 15.8 Conclusions -- 16 Twin-Control Evaluation in Industrial Environment: Automotive Case -- 16.1 Introduction -- 16.2 Use Case Description -- 16.3 Evaluation Strategy -- 16.4 Scenario of Use 1: Machine Tool Design -- 16.4.1 Virtual Machine Tool with Integrated Process Models -- 16.4.2 Energy Efficiency Models -- 16.5 Scenario of Use 2: Process Design -- 16.5.1 Machining Process Models. , 16.6 Scenario of Use 3: Process Control -- 16.6.1 Local Machine Tool and Process Monitoring and Control Device -- 16.7 Scenario of Use 4: Maintenance -- 16.7.1 Fleet Management System -- 16.8 Scenario of Use 5: Quality Control -- 16.8.1 Local Machine Tool and Process Monitoring and Control Device -- 16.9 Conclusions -- Conclusions and Next Steps.
    Additional Edition: Print version: Armendia, Mikel Twin-Control Cham : Springer International Publishing AG,c2019 ISBN 9783030022020
    Language: English
    Subjects: Engineering
    RVK:
    RVK:
    Keywords: Electronic books.
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV045439896
    Format: 1 Online-Ressource , Illustrationen
    ISBN: 9783030022037
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-02202-0
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Verarbeitende Industrie ; Maschinenbau ; Werkzeugmaschine ; Steuerungstechnik
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9948148138702882
    Format: XVI, 296 p. 225 illus., 220 illus. in color. , online resource.
    Edition: 1st ed. 2019.
    ISBN: 9783030022037
    Content: This open access book summarizes the results of the European research project “Twin-model based virtual manufacturing for machine tool-process simulation and control” (Twin-Control). The first part reviews the applications of ICTs in machine tools and manufacturing, from a scientific and industrial point of view, and introduces the Twin-Control approach, while Part 2 discusses the development of a digital twin of machine tools. The third part addresses the monitoring and data management infrastructure of machines and manufacturing processes and numerous applications of energy monitoring. Part 4 then highlights various features developed in the project by combining the developments covered in Parts 3 and 4 to control the manufacturing processes applying the so-called CPSs. Lastly, Part 5 presents a complete validation of Twin-Control features in two key industrial sectors: aerospace and automotive. The book offers a representative overview of the latest trends in the manufacturing industry, with a focus on machine tools. .
    Note: Preface -- Introduction -- Virtual Representation of the Machine Tool and Machining Processes -- Real Representation of the Machine Tool and Machining Processes -- Integration of the Twin Concept -- From Theory to Practice -- Summary and Conclusions.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9783030022020
    Additional Edition: Printed edition: ISBN 9783030022044
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949595422102882
    Format: 1 online resource (XVI, 296 p. 225 illus., 220 illus. in color.)
    Edition: 1st ed. 2019.
    ISBN: 3-030-02203-X
    Content: This open access book summarizes the results of the European research project “Twin-model based virtual manufacturing for machine tool-process simulation and control” (Twin-Control). The first part reviews the applications of ICTs in machine tools and manufacturing, from a scientific and industrial point of view, and introduces the Twin-Control approach, while Part 2 discusses the development of a digital twin of machine tools. The third part addresses the monitoring and data management infrastructure of machines and manufacturing processes and numerous applications of energy monitoring. Part 4 then highlights various features developed in the project by combining the developments covered in Parts 3 and 4 to control the manufacturing processes applying the so-called CPSs. Lastly, Part 5 presents a complete validation of Twin-Control features in two key industrial sectors: aerospace and automotive. The book offers a representative overview of the latest trends in the manufacturing industry, with a focus on machine tools. .
    Note: Preface -- Introduction -- Virtual Representation of the Machine Tool and Machining Processes -- Real Representation of the Machine Tool and Machining Processes -- Integration of the Twin Concept -- From Theory to Practice -- Summary and Conclusions. , English
    Additional Edition: ISBN 3-030-02202-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edocfu_9959027244102883
    Format: 1 online resource (XVI, 296 p. 225 illus., 220 illus. in color.)
    Edition: 1st ed. 2019.
    ISBN: 3-030-02203-X
    Content: This open access book summarizes the results of the European research project “Twin-model based virtual manufacturing for machine tool-process simulation and control” (Twin-Control). The first part reviews the applications of ICTs in machine tools and manufacturing, from a scientific and industrial point of view, and introduces the Twin-Control approach, while Part 2 discusses the development of a digital twin of machine tools. The third part addresses the monitoring and data management infrastructure of machines and manufacturing processes and numerous applications of energy monitoring. Part 4 then highlights various features developed in the project by combining the developments covered in Parts 3 and 4 to control the manufacturing processes applying the so-called CPSs. Lastly, Part 5 presents a complete validation of Twin-Control features in two key industrial sectors: aerospace and automotive. The book offers a representative overview of the latest trends in the manufacturing industry, with a focus on machine tools. .
    Note: Preface -- Introduction -- Virtual Representation of the Machine Tool and Machining Processes -- Real Representation of the Machine Tool and Machining Processes -- Integration of the Twin Concept -- From Theory to Practice -- Summary and Conclusions. , English
    Additional Edition: ISBN 3-030-02202-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edoccha_9959027244102883
    Format: 1 online resource (XVI, 296 p. 225 illus., 220 illus. in color.)
    Edition: 1st ed. 2019.
    ISBN: 3-030-02203-X
    Content: This open access book summarizes the results of the European research project “Twin-model based virtual manufacturing for machine tool-process simulation and control” (Twin-Control). The first part reviews the applications of ICTs in machine tools and manufacturing, from a scientific and industrial point of view, and introduces the Twin-Control approach, while Part 2 discusses the development of a digital twin of machine tools. The third part addresses the monitoring and data management infrastructure of machines and manufacturing processes and numerous applications of energy monitoring. Part 4 then highlights various features developed in the project by combining the developments covered in Parts 3 and 4 to control the manufacturing processes applying the so-called CPSs. Lastly, Part 5 presents a complete validation of Twin-Control features in two key industrial sectors: aerospace and automotive. The book offers a representative overview of the latest trends in the manufacturing industry, with a focus on machine tools. .
    Note: Preface -- Introduction -- Virtual Representation of the Machine Tool and Machining Processes -- Real Representation of the Machine Tool and Machining Processes -- Integration of the Twin Concept -- From Theory to Practice -- Summary and Conclusions. , English
    Additional Edition: ISBN 3-030-02202-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783030002022?
Did you mean 9783030012090?
Did you mean 9780300220209?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages