Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    Cham, Switzerland : Springer
    UID:
    b3kat_BV046137572
    Umfang: 1 Online-Ressource (xvii, 452 Seiten) , 292 Illustrationen, 171 Illustrationen (farbig)
    ISBN: 9783030161187
    Serie: Particle acceleration and detection
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-16117-0
    Sprache: Englisch
    Fachgebiete: Physik
    RVK:
    Schlagwort(e): Teilchenbeschleuniger ; Elektromagnet
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    UID:
    almahu_9949602274802882
    Umfang: 1 online resource (461 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030161187
    Serie: Particle Acceleration and Detection Series
    Anmerkung: Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Glossary of Terms -- Part I: Introduction -- Chapter 1: Superconducting Magnets for Accelerators -- 1.1 Circular Accelerators and Superconducting Magnets -- 1.2 Accelerator Magnet Design and Operation -- 1.2.1 Magnetic Design -- 1.2.2 Field Quality -- 1.2.3 Mechanical Design -- 1.2.4 Operation Temperature, Fields and Margins -- 1.2.5 Magnet Thermal Stabilization -- 1.2.6 Quench Protection -- 1.3 Nb-Ti Accelerator Magnets and Technologies -- 1.3.1 Nb-Ti Composite Wire -- 1.3.2 Nb-Ti Accelerator Magnet Designs and Technologies -- 1.4 Next Generation of Superconducting Accelerator Magnets -- 1.4.1 Nb3Sn Composite Wires -- 1.4.2 Design Issues of Nb3Sn Accelerator Magnets -- 1.4.3 Nb3Sn Magnet Technology -- 1.4.4 Magnet Performance Test -- References -- Chapter 2: Nb3Sn Wires and Cables for High-Field Accelerator Magnets -- 2.1 Introduction -- 2.2 Development of Nb3Sn from the 1960s to the 1990s -- 2.2.1 Nb3Sn Development from the 1960s to the 1970s -- 2.2.2 Nb3Sn Development from the 1980s to the 1990s -- 2.3 Modern High-Jc Nb3Sn Composite Wires -- 2.3.1 Target Parameters of Nb3Sn Wires for HEP -- 2.3.2 PIT Nb3Sn Wires -- 2.3.3 IT Nb3Sn Wires -- 2.3.4 Main Properties of Nb3Sn Composite Wires -- 2.3.4.1 Critical Current Density Jc and Critical Current Ic -- 2.3.4.2 Flux Jump Instabilities -- 2.3.4.3 Nb3Sn Wire Magnetization -- 2.3.4.4 Cu Matrix RRR -- 2.4 Rutherford Cables Based on PIT and RRP Wires -- 2.4.1 Cable Design and Fabrication -- 2.4.2 Cable Size Changes after Reaction -- 2.4.3 Cable Performance Parameters -- 2.4.3.1 Cable Critical Current Ic and Flux Jump Instabilities -- 2.4.3.2 Effect of Strand Plastic Deformation in Cables -- 2.4.3.3 Cable RRR -- 2.4.3.4 Effect of Transverse Pressure -- 2.4.3.5 Interstrand Resistance -- 2.5 Conclusion. , Appendix 1-Wire and Cable Parameterizations -- Cable Aspect Ratio -- Cable Cross-Section -- Pitch or Transposition Angle θ -- Cable Packing Factor PF -- Cable Edge and Width Deformations Re, Rw -- Critical Current Density -- Engineering Current Density -- Magnetization and AC Losses -- References -- Chapter 3: Nb3Sn Accelerator Magnets: The Early Days (1960s-1980s) -- 3.1 Introduction -- 3.2 Nb3Sn Accelerator Magnets in the 1960s -- 3.2.1 First Nb3Sn Quadrupoles at BNL -- 3.2.2 First Nb3Sn Dipoles for Synchrotron at BNL -- 3.2.3 Nb3Sn Magnet Design Based on Braided Cable -- 3.3 Nb3Sn Magnet R& -- D in the 1970s -- 3.4 Nb3Sn R& -- D in the 1980s -- 3.4.1 The Nb3Sn Dipole at CEA-Saclay, 1983 -- 3.4.1.1 Conductor -- 3.4.1.2 Magnet Design and Manufacturing -- 3.4.1.3 Test Results -- 3.4.2 Nb3Sn Technology Development at CERN -- 3.4.2.1 Conductor -- 3.4.2.2 Coil Fabrication Technology -- 3.4.2.3 Nb3Sn Quadrupole Design and Fabrication -- 3.4.2.4 Quadrupole Test Results -- 3.4.3 Nb3Sn Dipole at LBNL -- 3.4.3.1 Main Design Concept -- 3.4.3.2 Conductor -- 3.4.3.3 Magnet Construction -- 3.4.3.4 Test Results -- 3.4.4 Nb3Sn Magnet R& -- D at KEK, Japan -- 3.4.4.1 KEK-Toshiba Small-Scale Nb3Sn Dipole (1980) -- 3.4.4.2 The KEK Effort Toward a 10 T Dipole -- 3.4.4.3 R& -- D Racetrack as Intermediate Step -- 3.4.4.4 Double-Layer Dipole Test -- 3.5 Nb3Sn Dipole for a Cable Test Facility at BNL (1991) -- 3.5.1 Conductor -- 3.5.2 Coil Fabrication -- 3.5.3 Magnet Assembly -- 3.5.4 Test Results -- 3.6 Conclusion -- References -- Part II: Cos-Theta Dipole Magnets -- Chapter 4: CERN-ELIN Nb3Sn Dipole Model -- 4.1 Introduction -- 4.2 The CERN-ELIN Collaboration Agreement -- 4.3 Magnet Design Concept -- 4.4 Superconducting Strands and Cables -- 4.5 Magnetic and Mechanical Design -- 4.5.1 Magnetic Design -- 4.5.2 Mechanical Design. , 4.6 Coil Manufacture and Magnet Assembly -- 4.7 Mirror Coil Test Facility -- 4.8 Tests and Performance -- 4.9 Coil with Powder-in-Tube Cables -- 4.10 Conclusion -- References -- Chapter 5: The UT-CERN Cos-theta LHC-Type Nb3Sn Dipole Magnet -- 5.1 Introduction -- 5.2 Magnet Design -- 5.2.1 Electromagnetic Design -- 5.2.2 Conductor Choice and Parameters -- 5.2.3 Mechanical Design -- 5.3 Technology Development and Magnet Manufacturing -- 5.3.1 Cable Degradation Studies -- 5.3.2 Mechanical Model -- 5.3.3 Cable Insulation -- 5.3.4 Coil Wedges and End Spacer Design -- 5.3.5 Coil Winding -- 5.3.6 Coil Reaction Heat Treatment -- 5.3.7 Electrical Connection Between the Coils -- 5.3.8 Impregnation -- 5.3.9 Coil Assembly and Collaring -- 5.3.10 Collared Coil Yoking and Skinning -- 5.3.11 Instrumentation and Quench Heaters -- 5.4 Test Results -- 5.4.1 Magnet Training -- 5.4.2 Magnetic Measurements -- 5.4.3 Losses During Ramping -- 5.4.4 Ramp Rate Sensitivity -- 5.4.5 Temperature Development -- 5.4.6 Quench Propagation Velocity -- 5.5 Conclusion -- References -- Chapter 6: LBNL Cos-theta Nb3Sn Dipole Magnet D20 -- 6.1 Introduction -- 6.2 Magnet Design -- 6.2.1 Design Approach -- 6.2.2 Magnetic Design Optimization -- 6.2.3 Conductor Development -- 6.2.4 Mechanical Design and Analysis -- 6.2.5 D20 Final Design -- 6.3 Magnet Fabrication -- 6.3.1 Coil Components -- 6.3.2 Coil Insulation and Reaction -- 6.3.3 Splice Joints -- 6.3.4 Coil Epoxy Impregnation -- 6.3.5 Quench Protection -- 6.3.6 Magnet Assembly -- 6.4 Test Results and Discussion -- 6.4.1 Training and Operation -- 6.4.2 Magnetic Measurements -- 6.4.3 Discussion -- 6.5 Conclusion -- References -- Chapter 7: Cos-theta Nb3Sn Dipole for a Very Large Hadron Collider -- 7.1 Introduction -- 7.2 Design Studies -- 7.3 Magnet Design and Parameters -- 7.3.1 Single-Aperture Design and Parameters. , 7.3.1.1 Magnetic Analysis -- 7.3.1.2 Mechanical Analysis -- 7.3.1.3 Quench Protection -- 7.3.2 Twin-Aperture Designs and Parameters -- 7.4 Fabrication Technology -- 7.4.1 Mechanical Model -- 7.4.2 Technological Model (HFDA01) -- 7.4.2.1 Strand and Cable -- 7.4.2.2 Coil Winding and Curing -- 7.4.2.3 Coil Reaction -- 7.4.2.4 Splice Joints -- 7.4.2.5 Epoxy Impregnation -- 7.4.2.6 Model Assembly and Instrumentation -- 7.5 Short Models -- 7.5.1 Short Dipole Models -- 7.5.1.1 HFDA02 -- 7.5.1.2 HFDA03 -- 7.5.1.3 HFDA04 -- 7.5.1.4 HFDA05 -- 7.5.1.5 HFDA06 -- 7.5.1.6 HFDA07 -- 7.5.1.7 Dipole Mirror Magnets -- 7.5.1.8 HFDM01 -- 7.5.1.9 HFDM02 -- 7.5.1.10 HFDM03 -- 7.5.1.11 HFDM04, HFDM05 -- 7.5.1.12 HFDM06 -- 7.5.1.13 LM1 (HFDM07) -- 7.5.1.14 LM2 (HFDM08) -- 7.6 Dipole Model Tests -- 7.6.1 Quench Performance -- 7.6.2 Field Quality -- 7.7 Dipole Mirror Tests -- 7.7.1 Conductor and Coil Technology Study -- 7.7.2 Technology Scale-Up -- 7.8 Conclusion -- References -- Chapter 8: Nb3Sn 11 T Dipole for the High Luminosity LHC (FNAL) -- 8.1 Introduction -- 8.2 Magnet Design Concept -- 8.2.1 Design Considerations -- 8.2.2 Mechanical Designs and Analysis -- 8.2.3 Magnetic Design and Analysis -- 8.2.4 Magnet Design Parameters -- 8.2.5 Quench Protection -- 8.3 11 T Dipole R& -- D -- 8.3.1 Model Design and Fabrication -- 8.3.1.1 Nb3Sn Wire and Cable -- 8.3.1.2 Coil -- 8.3.1.3 Ground Insulation and Quench Protection Heaters -- 8.3.1.4 Collared Coil -- 8.3.1.5 Short Dipole Models -- Single-Aperture Models -- Twin-Aperture Model -- 8.3.2 Magnet Test -- 8.3.2.1 Quench Performance -- Single-Aperture Dipoles and Mirror Models -- Twin-Aperture Model -- 8.3.2.2 Magnetic Measurements -- 8.3.2.3 Quench Protection Studies -- Quench Temperature Measurements -- Longitudinal Quench Propagation Velocity -- Radial Quench Propagation -- 8.4 FNAL 11 T Dipole R& -- D Summary. , References -- Chapter 9: Nb3Sn 11 T Dipole for the High Luminosity LHC (CERN) -- 9.1 Introduction -- 9.1.1 History of the 11 T Project -- 9.1.2 Present Scope of the 11 T Project -- 9.2 Magnet Design -- 9.2.1 Design Constraints -- 9.2.2 Basic Features -- 9.2.3 Conductor Choice and Nominal Dimensions -- 9.2.4 Magnetic Design -- 9.2.5 Mechanical Design -- 9.3 11 T Dipole Development at CERN -- 9.3.1 CERN Model Design and Fabrication Procedure -- 9.3.1.1 Conductor for the R& -- D Phase and for Series Production -- 9.3.1.2 Insulation -- 9.3.1.3 Coil Technology -- 9.3.1.4 Ground Insulation and Quench Protection Heaters -- 9.3.1.5 Collared Coil -- 9.3.1.6 Short Dipole Models -- Single-Aperture Models -- Two-In-One-Aperture Dipole -- 9.3.2 Magnet Test -- 9.3.3 Quench Performance -- 9.3.3.1 Model Magnet Limits -- 9.3.3.2 Model Magnet Training -- 9.3.3.3 Training after Thermal Cycle -- 9.3.3.4 Erratic Quenches -- 9.3.3.5 Detraining/Degradation During Power -- 9.3.3.6 Holding Current Tests -- 9.3.3.7 Temperature Dependence -- 9.3.3.8 Ramp Rate Dependence -- 9.3.3.9 Splices -- 9.3.3.10 Magnetic Measurements -- 9.3.4 Design Revisions by the 11 T Task Force -- 9.3.5 Full-Scale Prototype -- 9.3.6 Series Production -- 9.4 Conclusions -- References -- Part III: Block-Type Dipole Magnets -- Chapter 10: Block-Type Nb3Sn Dipole R& -- D at Texas A& -- M University -- 10.1 Introduction -- 10.2 R& -- D Program and Approach -- 10.2.1 Stress Management -- 10.2.2 Pre-stressing the Structure -- 10.2.3 Flux Plate Suppression of Persistent Magnetization Fields -- 10.3 TAMU1: Single-Shell Nb-Ti Model Dipole -- 10.3.1 Magnet Manufacture -- 10.3.2 Testing TAMU1 -- 10.4 TAMU2: Mirror-Geometry Nb3Sn Dipole -- 10.4.1 Laminar Springs -- 10.4.2 Mica Paper Shear Release -- 10.4.3 Thermal Contraction Compensation Using Ti Blocks -- 10.4.4 Stress Transducers. , 10.4.5 Coil Fabrication.
    Weitere Ausg.: Print version: Schoerling, Daniel Nb3Sn Accelerator Magnets Cham : Springer International Publishing AG,c2019 ISBN 9783030161170
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Springer Nature | Cham :Springer International Publishing :
    UID:
    almahu_9949595397902882
    Umfang: 1 online resource (XVII, 452 p. 292 illus., 171 illus. in color.)
    Ausgabe: 1st ed. 2019.
    ISBN: 3-030-16118-8
    Serie: Particle Acceleration and Detection,
    Inhalt: This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.
    Anmerkung: Part 1. Introduction -- Chapter 1. SC magnets in particle accelerators (D. Schoerling) -- Chapter 2. Nb3Sn strand and cable progress (E. Barzi) -- Chapter 3. Historical overview (1960s-1980s) (L. Rossi) -- Part 2. Cos-theta dipoles -- Chapter 4. CERN-ELIN (R. Perin) -- Chapter 5. CERN-MSUT (A. den Ouden) -- Chapter 6. LBNL D20 (S. Caspi) -- Chapter 7. FNAL HFDA (A. Zlobin) -- Chapter 8. FNAL/CERN MBH (F. Savary) -- Part 3. Block-type dipoles -- Chapter 9. TAMU (P. McIntyre) -- Chapter 10. LBNL HD (GL. Sabbi) -- Part 4. Common coil dipoles -- Chapter 11. BNL (R. Gupta) -- Chapter 12. LBNL (S. Gourlay) -- Chapter 13. FNAL HFDC (A. Zlobin) -- Part 5. Outlook -- Chapter 14. Nb3Sn accelerator needs for FCC (D. Tommasini) -- Chapter 15. Summary/Conclusions (D. Schoerling). , English
    Weitere Ausg.: ISBN 3-030-16117-X
    Sprache: Englisch
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Springer Nature | Cham :Springer International Publishing :
    UID:
    edoccha_9959250214902883
    Umfang: 1 online resource (XVII, 452 p. 292 illus., 171 illus. in color.)
    Ausgabe: 1st ed. 2019.
    ISBN: 3-030-16118-8
    Serie: Particle Acceleration and Detection,
    Inhalt: This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.
    Anmerkung: Part 1. Introduction -- Chapter 1. SC magnets in particle accelerators (D. Schoerling) -- Chapter 2. Nb3Sn strand and cable progress (E. Barzi) -- Chapter 3. Historical overview (1960s-1980s) (L. Rossi) -- Part 2. Cos-theta dipoles -- Chapter 4. CERN-ELIN (R. Perin) -- Chapter 5. CERN-MSUT (A. den Ouden) -- Chapter 6. LBNL D20 (S. Caspi) -- Chapter 7. FNAL HFDA (A. Zlobin) -- Chapter 8. FNAL/CERN MBH (F. Savary) -- Part 3. Block-type dipoles -- Chapter 9. TAMU (P. McIntyre) -- Chapter 10. LBNL HD (GL. Sabbi) -- Part 4. Common coil dipoles -- Chapter 11. BNL (R. Gupta) -- Chapter 12. LBNL (S. Gourlay) -- Chapter 13. FNAL HFDC (A. Zlobin) -- Part 5. Outlook -- Chapter 14. Nb3Sn accelerator needs for FCC (D. Tommasini) -- Chapter 15. Summary/Conclusions (D. Schoerling). , English
    Weitere Ausg.: ISBN 3-030-16117-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Springer Nature | Cham :Springer International Publishing :
    UID:
    edocfu_9959250214902883
    Umfang: 1 online resource (XVII, 452 p. 292 illus., 171 illus. in color.)
    Ausgabe: 1st ed. 2019.
    ISBN: 3-030-16118-8
    Serie: Particle Acceleration and Detection,
    Inhalt: This open access book is written by world-recognized experts in the fields of applied superconductivity and superconducting accelerator magnet technologies. It provides a contemporary review and assessment of the experience in research and development of high-field accelerator dipole magnets based on Nb3Sn superconductor over the past five decades. The reader attains clear insight into the development and the main properties of Nb3Sn composite superconducting wires and Rutherford cables, and details of accelerator dipole designs, technologies and performance. Special attention is given to innovative features of the developed Nb3Sn magnets. The book concludes with a discussion of accelerator magnet needs for future circular colliders.
    Anmerkung: Part 1. Introduction -- Chapter 1. SC magnets in particle accelerators (D. Schoerling) -- Chapter 2. Nb3Sn strand and cable progress (E. Barzi) -- Chapter 3. Historical overview (1960s-1980s) (L. Rossi) -- Part 2. Cos-theta dipoles -- Chapter 4. CERN-ELIN (R. Perin) -- Chapter 5. CERN-MSUT (A. den Ouden) -- Chapter 6. LBNL D20 (S. Caspi) -- Chapter 7. FNAL HFDA (A. Zlobin) -- Chapter 8. FNAL/CERN MBH (F. Savary) -- Part 3. Block-type dipoles -- Chapter 9. TAMU (P. McIntyre) -- Chapter 10. LBNL HD (GL. Sabbi) -- Part 4. Common coil dipoles -- Chapter 11. BNL (R. Gupta) -- Chapter 12. LBNL (S. Gourlay) -- Chapter 13. FNAL HFDC (A. Zlobin) -- Part 5. Outlook -- Chapter 14. Nb3Sn accelerator needs for FCC (D. Tommasini) -- Chapter 15. Summary/Conclusions (D. Schoerling). , English
    Weitere Ausg.: ISBN 3-030-16117-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783030116170?
Meinten Sie 9783030126117?
Meinten Sie 9783000161100?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz