Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Schlagwörter
  • 1
    Online-Ressource
    Online-Ressource
    Cham, Switzerland : Springer
    UID:
    b3kat_BV047047227
    Umfang: 1 Online-Ressource
    Ausgabe: Second edition
    ISBN: 9783030447878
    Serie: Graduate texts in physics
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-44786-1
    Sprache: Englisch
    Fachgebiete: Physik
    RVK:
    Schlagwort(e): Akustik ; Schwingung ; Fluid ; Schwingung ; Fluid ; Electronic books.
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Springer Nature | Cham :Springer International Publishing :
    UID:
    almahu_9948612297002882
    Umfang: 1 online resource (XLIII, 783 p. 413 illus., 93 illus. in color.)
    Ausgabe: 2nd ed. 2020.
    ISBN: 9783030447878 , 3030447871
    Serie: Graduate Texts in Physics,
    Inhalt: This open access textbook, like Rayleigh’s classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features “Talk Like an Acoustician“ boxes to highlight key terms introduced in the text.
    Anmerkung: Chapter1: Comfort for the Computationally Crippled -- Part I – Vibrations -- Chapter2: The Simple Harmonic Oscillator -- Chapter3: String Theory -- Chapter4: Elasticity of Solids -- Chapter5: Modes of Bars -- Chapter6: Membranes, Plates and Microphones -- Part 2 – Waves in Fluids -- Chapter7: Ideal Gas Laws -- Chapter8: Nondissipative Lumped Elements -- Chapter8: Nondissipative Lumped Elements -- Chapter9: Dissipative Hydrodynamics -- Chapter10: One-Dimensional Propagation -- Chapter11: Reflection, Transmission, and Refraction -- Chapter12: Radiation and Scattering -- Chapter13: Three-Dimensional Enclosures -- Chapter14: Attenuation of Sound -- Part3: Extensions -- Chapter15: Nonlinear Acoustics. , English
    Weitere Ausg.: ISBN 9783030447861
    Weitere Ausg.: ISBN 3030447863
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    [Erscheinungsort nicht ermittelbar] : Springer Nature
    UID:
    gbv_1778470629
    Umfang: 1 Online-Ressource (783 p.)
    ISBN: 9783030447878
    Serie: Graduate Texts in Physics
    Inhalt: This open access textbook ...
    Anmerkung: English
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030447861
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    UID:
    almahu_9949982514802882
    Umfang: 1 online resource (811 pages)
    Ausgabe: 2nd ed.
    ISBN: 9783030447878
    Serie: Graduate Texts in Physics Series
    Anmerkung: Intro -- The Acoustical Society of America -- Preface to the Second Edition -- Preface to the First Edition -- List of Recurring Symbols -- Roman Lower Case -- Roman Lower Case -- Roman Upper Case -- Greek Lower Case -- Greek Upper Case -- Subscripted Upper-Case Roman -- Subscripted Lower-Case Roman -- Subscripted Lower-Case Greek -- Phasors -- Other -- Acknowledgments -- Contents -- About the Book -- About the Author -- Chapter 1: Comfort for the Computationally Crippled -- 1.1 The Five Most Useful Math Techniques -- 1.1.1 Taylor Series -- 1.1.2 The Product Rule or Integration by Parts -- 1.1.3 Logarithmic Differentiation -- 1.2 Equilibrium, Stability, and Hookeś Law -- 1.2.1 Potentials and Forces -- 1.2.2 A Simple Pendulum -- 1.3 The Concept of Linearity -- 1.4 Superposition and Fourier Synthesis -- 1.5 Convenience (Complex) Numbers -- 1.5.1 Geometrical Interpretation on the Argand Plane -- 1.5.2 Phasor Notation -- 1.5.3 Algebraic Operations with Complex Numbers -- 1.5.4 Integration and Differentiation of Complex Exponentials -- 1.5.5 Time Averages of Complex Products (Power) -- 1.6 Standard (SI) Units and Dimensional Homogeneity -- 1.7 Similitude and the Buckingham Pi-Theorem (Natural Units) -- 1.7.1 Three Simple Examples -- 1.7.2 Dimensionless Pi-Groups -- 1.7.3 Windscreen Noise* -- 1.7.4 Similitude Summary -- 1.8 Precision, Accuracy, and Error Propagation -- 1.8.1 Random Errors (Noise) and Relative Uncertainty -- 1.8.2 Normal Error Function or the Gaussian Distribution -- 1.8.3 Systematic Errors (Bias) -- 1.8.4 Error Propagation and Covariance -- 1.8.5 Significant Figures -- 1.9 Least-Squares Fitting and Parameter Estimation -- 1.9.1 Linear Correlation Coefficient -- 1.9.2 Relative Error in the Slope -- 1.9.3 Linearized Least-Squares Fitting -- 1.9.4 Caveat for Data Sets with Small N*. , 1.9.5 Best-Fit to Models with More Than Two Adjustable Parameters -- 1.10 The Absence of Rigorous Mathematics -- Talk Like an Acoustician -- References -- Part I: Vibrations -- Chapter 2: The Simple Harmonic Oscillator -- 2.1 The Undamped Harmonic Oscillator -- 2.1.1 Initial Conditions and the Phasor Representation -- 2.2 The Lumped-Element Approximation -- 2.2.1 Series and Parallel Combinations of Several Springs -- 2.2.2 A Characteristic Speed -- 2.3 Energy -- 2.3.1 The Virial Theorem -- 2.3.2 Rayleighś Method -- 2.3.3 Gravitational Offset -- 2.3.4 Adiabatic Invariance -- 2.4 Damping and Free-Decay -- 2.4.1 Viscous Damping and Mechanical Resistance -- 2.4.2 Free-Decay Frequency and Quality Factor -- 2.4.3 Critical Damping -- 2.4.4 Thermal Equilibrium and Fluctuations -- 2.4.5 Frictional (Coulomb) Damping* -- 2.5 Driven Systems -- 2.5.1 Force-Driven SHO -- 2.5.2 Power Dissipation, the Decibel, and Resonance Bandwidth -- 2.5.3 Resonance Tracking and the Phase-Locked Loop* -- 2.5.4 Transient Response -- 2.5.5 The Electrodynamic Loudspeaker -- 2.5.6 Electrodynamic (Moving-Coil) Microphone -- 2.5.7 Displacement-Driven SHO and Transmissibility -- 2.6 Vibration Sensors -- 2.7 Coupled Oscillators -- 2.7.1 Two Identical Masses with Three Identical Springs -- 2.7.2 Coupled Equations for Identical Masses and Springs -- 2.7.3 Normal Modes and Normal Coordinates -- 2.7.4 Other Initial Conditions -- 2.7.5 General Solutions for Two Masses and Three Springs -- 2.7.6 Driven Oscillators, Level Repulsion, and Beating -- 2.7.7 String of Pearls -- 2.8 The Not-So-Simple (?) Harmonic Oscillator -- Talk Like an Acoustician -- References -- Chapter 3: String Theory -- 3.1 Waves on a Flexible String -- 3.2 Pulse Reflections at a Boundary and the Utility of Phantoms -- 3.3 Normal Modes and Standing Waves -- 3.3.1 Idealized Boundary Conditions. , 3.3.2 Consonance and Dissonance* -- 3.3.3 Consonant Triads and Musical Scales* -- 3.4 Modal Energy -- 3.4.1 Nature Is Efficient -- 3.4.2 Point Mass Perturbation -- 3.4.3 Heavy Chain Pendulum (Nonuniform Tension)* -- 3.5 Initial Conditions -- 3.5.1 Total Modal Energy -- 3.6 ``Imperfect ́́Boundary Conditions -- 3.6.1 Example: Standing Wave Modes for M/ms = 5 -- 3.6.2 An Algebraic Approximation for the Mass-Loaded String -- 3.6.3 The Resistance-Loaded String* -- 3.7 Forced Motion of a Semi-Infinite String -- 3.8 Forced Motion of a Finite String -- 3.8.1 Displacement-Driven Finite String -- 3.8.2 Mass-Loaded String in the Impedance Model -- 3.8.3 Force-Driven Finite String -- 3.8.4 An Efficient Driver/Load Interaction -- 3.9 ``Iv́e Got the World on a String :́́ Chapter Summary -- Talk Like an Acoustician -- References -- Chapter 4: Elasticity of Solids -- 4.1 Hooke, Young, Poisson, and Fourier -- 4.2 Isotropic Elasticity -- 4.2.1 Bulk Modulus -- 4.2.2 Modulus of Unilateral Compression -- 4.2.3 Shear Modulus -- 4.2.4 Two Moduli Provide a Complete (Isotropic) Description -- 4.3 Real Springs -- 4.3.1 Solids as Springs -- 4.3.2 Flexure Springs -- 4.3.3 Triangularly Tapered Cantilever Spring* -- 4.3.4 Buckling -- 4.3.5 Torsional Springs -- 4.3.6 Coil Springs -- 4.4 Viscoelasticity -- 4.4.1 The Maxwell (Relaxation Time) Model -- 4.4.2 Standard Linear Model (SLM) of Viscoelasticity -- 4.4.3 Complex Stiffnesses and Moduli* -- 4.4.4 Kramers-Kronig Relations -- 4.5 Rubber Springs -- 4.5.1 Effective Modulus -- 4.5.2 Rubber-to-Glass Transition (Type I and Type II Rubbers) -- 4.5.3 Transmissibility of Rubberlike Vibration Isolators -- 4.6 Anisotropic (Crystalline) Elasticity* -- 4.7 There Is More to Stiffness Than Just `` ́́-- Talk Like an Acoustician -- References -- Chapter 5: Modes of Bars -- 5.1 Longitudinal Waves in Thin Bars. , 5.1.1 Longitudinal Waves in Bulk Solids -- 5.1.2 The Quartz Crystal Microbalance -- 5.1.3 Bodineś ``Sonic Hammer ́́-- 5.2 Torsional Waves in Thin Bars -- 5.3 Flexural Waves in Thin Bars -- 5.3.1 Dispersion -- 5.3.2 Flexural Wave Functions -- 5.3.3 Flexural Standing Wave Frequencies -- 5.3.4 Flexural Standing Wave Mode Shapes -- 5.3.5 Rayleigh Waves* -- 5.4 Resonant Determination of Elastic Moduli -- 5.4.1 Mode-Selective Electrodynamic Excitation and Detection -- 5.4.2 Bar Sample Size and Preparation -- 5.4.3 Measured Resonance Spectra -- 5.4.4 Effective Length Correction for Transducer Mass -- 5.4.5 Modes of a Viscoelastic Bar -- 5.4.6 Resonant Ultrasound Spectroscopy* -- 5.5 Vibrations of a Stiff String* -- 5.6 Harmonic Analysis -- Talk Like an Acoustician -- References -- Chapter 6: Membranes, Plates, and Microphones -- 6.1 Rectangular Membranes -- 6.1.1 Modes of a Rectangular Membrane -- 6.1.2 Modal Degeneracy -- 6.1.3 Density of Modes -- 6.2 Circular Membranes -- 6.2.1 Series Solution to the Circular Wave Equation -- 6.2.2 Modal Frequencies and Density for a Circular Membrane -- 6.2.3 Mode Similarities Illustrating Adiabatic Invariance -- 6.2.4 Normal Modes of Wedges and Annular Membranes* -- 6.2.5 Effective Piston Area for a Vibrating Membrane -- 6.2.6 Normal Mode Frequencies of Tympani -- 6.2.7 Pressure-Driven Circular Membranes -- 6.3 Response of a Condenser Microphone -- 6.3.1 Optimal Backplate Radius -- 6.3.2 Limits on Polarizing Voltages and Electrostatic Forces -- 6.3.3 Electret Condenser Microphone -- 6.4 Vibrations of Thin Plates -- 6.4.1 Normal Modes of a Clamped Circular Plate -- 6.5 Flatland -- Talk Like an Acoustician -- References -- Part II: Waves in Fluids -- Chapter 7: Ideal Gas Laws -- 7.1 Two Ways of Knowing-Phenomenology and Microscopics -- 7.1.1 Microscopic Models -- 7.1.2 Phenomenological Models. , 7.1.3 Adiabatic Equation of State for an Ideal Gas -- 7.1.4 Adiabatic Temperature Change -- 7.2 Specific Heats of Ideal Gases -- 7.2.1 Monatomic (Noble) Gases -- 7.2.2 Polyatomic Gases -- 7.3 The Fundamental Equations of Hydrodynamics -- 7.3.1 The Continuity Equation -- 7.3.2 The Navier-Stokes (Euler) Equation -- 7.3.3 The Entropy Equation -- 7.3.4 Closure with the Equation of State -- 7.4 Flashback -- Talk Like an Acoustician -- References -- Chapter 8: Nondissipative Lumped Elements -- 8.1 Oscillations About Equilibrium -- 8.2 Acoustical Compliance and the Continuity Equation -- 8.2.1 The Continuity Equation -- 8.2.2 Linearized Continuity Equation -- 8.2.3 Acoustical Compliance -- 8.2.4 The Gas Spring -- 8.3 Hydrostatic Pressure -- 8.4 Inertance and the Linearized Euler Equation -- 8.4.1 The Venturi Tube -- 8.4.2 The Linearized Euler Equation -- 8.4.3 Acoustical Inertance -- 8.4.4 Acoustical Mass -- 8.5 The Helmholtz Resonance Frequency -- 8.5.1 Helmholtz Resonator Network Analysis -- 8.5.2 A 500-mL Boiling Flask -- 8.6 DeltaEC Software -- 8.6.1 Download DeltaEC -- 8.6.2 Getting Started with DeltaEC (Thermophysical Properties) -- 8.6.3 Creating planewave.out -- 8.6.4 Running planewave.out -- 8.6.5 Finding the Resonance Frequencies of planewave.out -- 8.6.6 State Variable Plots (.sp) -- 8.6.7 Modifying planewave.out to Create Flask500.out -- 8.6.8 Interpreting the .out File -- 8.6.9 The RPN Segment -- 8.6.10 Power Flow and Dissipation in the 500 Ml Boiling Flask -- 8.6.11 An ``Effective Length ́́Correction -- 8.6.12 Incremental Plotting and the .ip File -- 8.6.13 So Much More Utility in DeltaEC -- 8.7 Coupled Helmholtz Resonators -- 8.8 The Bass-Reflex Loudspeaker Enclosure -- 8.8.1 Beranekś Box Driven by a Constant Volume Velocity -- 8.8.2 Loudspeaker-Driven Bass-Reflex Enclosure* -- 8.9 Lumped Elements -- Talk like an Acoustician -- References. , Chapter 9: Dissipative Hydrodynamics.
    Weitere Ausg.: Print version: Garrett, Steven L. Understanding Acoustics Cham : Springer International Publishing AG,c2020 ISBN 9783030447861
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing :
    UID:
    almahu_9948609773602882
    Umfang: XLIII, 783 p. 413 illus., 93 illus. in color. , online resource.
    Ausgabe: 2nd ed. 2020.
    ISBN: 9783030447878
    Serie: Graduate Texts in Physics,
    Inhalt: This open access textbook, like Rayleigh's classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features "Talk Like an Acoustician" boxes to highlight key terms introduced in the text.
    Anmerkung: Chapter1: Comfort for the Computationally Crippled -- Part I - Vibrations -- Chapter2: The Simple Harmonic Oscillator -- Chapter3: String Theory -- Chapter4: Elasticity of Solids -- Chapter5: Modes of Bars -- Chapter6: Membranes, Plates and Microphones -- Part 2 - Waves in Fluids -- Chapter7: Ideal Gas Laws -- Chapter8: Nondissipative Lumped Elements -- Chapter8: Nondissipative Lumped Elements -- Chapter9: Dissipative Hydrodynamics -- Chapter10: One-Dimensional Propagation -- Chapter11: Reflection, Transmission, and Refraction -- Chapter12: Radiation and Scattering -- Chapter13: Three-Dimensional Enclosures -- Chapter14: Attenuation of Sound -- Part3: Extensions -- Chapter15: Nonlinear Acoustics.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783030447861
    Weitere Ausg.: Printed edition: ISBN 9783030447885
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Cham, Switzerland : ASA Press, Springer
    UID:
    gbv_1741574137
    Umfang: 1 Online-Ressource (xliii, 783 Seiten) , Illustrationen
    Ausgabe: Second edition
    ISBN: 9783030447878
    Serie: Graduate texts in physics
    Inhalt: Chapter1: Comfort for the Computationally Crippled -- Part I – Vibrations -- Chapter2: The Simple Harmonic Oscillator -- Chapter3: String Theory -- Chapter4: Elasticity of Solids -- Chapter5: Modes of Bars -- Chapter6: Membranes, Plates and Microphones -- Part 2 – Waves in Fluids -- Chapter7: Ideal Gas Laws -- Chapter8: Nondissipative Lumped Elements -- Chapter8: Nondissipative Lumped Elements -- Chapter9: Dissipative Hydrodynamics -- Chapter10: One-Dimensional Propagation -- Chapter11: Reflection, Transmission, and Refraction -- Chapter12: Radiation and Scattering -- Chapter13: Three-Dimensional Enclosures -- Chapter14: Attenuation of Sound -- Part3: Extensions -- Chapter15: Nonlinear Acoustics.
    Inhalt: This open access textbook, like Rayleigh’s classic Theory of Sound, focuses on experiments and on approximation techniques rather than mathematical rigor. The second edition has benefited from comments and corrections provided by many acousticians, in particular those who have used the first edition in undergraduate and graduate courses. For example, phasor notation has been added to clearly distinguish complex variables, and there is a new section on radiation from an unbaffled piston. Drawing on over 40 years of teaching experience at UCLA, the Naval Postgraduate School, and Penn State, the author presents a uniform methodology, based on hydrodynamic fundamentals for analysis of lumped-element systems and wave propagation that can accommodate dissipative mechanisms and geometrically-complex media. Five chapters on vibration and elastic waves highlight modern applications, including viscoelasticity and resonance techniques for measurement of elastic moduli, while introducing analytical techniques and approximation strategies that are revisited in nine subsequent chapters describing all aspects of generation, transmission, scattering, and reception of waves in fluids. Problems integrate multiple concepts, and several include experimental data to provide experience in choosing optimal strategies for extraction of experimental results and their uncertainties. Fundamental physical principles that do not ordinarily appear in other acoustics textbooks, like adiabatic invariance, similitude, the Kramers-Kronig relations, and the equipartition theorem, are shown to provide independent tests of results obtained from numerical solutions, commercial software, and simulations. Thanks to the Veneklasen Research Foundation, this popular textbook is now open access, making the e-book available for free download worldwide. Provides graduate-level treatment of acoustics and vibration suitable for use in courses, for self-study, and as a reference Highlights fundamental physical principles that can provide independent tests of the validity of numerical solutions, commercial software, and computer simulations Demonstrates approximation techniques that greatly simplify the mathematics without a substantial decrease in accuracy Incorporates a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation Emphasizes actual applications as examples of topics explained in the text Includes realistic end-of-chapter problems, some including experimental data, as well as a Solutions Manual for instructors. Features “Talk Like an Acoustician“ boxes to highlight key terms introduced in the text.
    Anmerkung: Open Access
    Weitere Ausg.: ISBN 9783030447861
    Weitere Ausg.: ISBN 9783030447885
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030447861
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030447885
    Sprache: Englisch
    Fachgebiete: Physik
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783030047818?
Meinten Sie 9783030047887?
Meinten Sie 9783030147778?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz