Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almafu_BV047047877
    Format: 1 Online-Ressource (xv, 289 Seiten).
    ISBN: 978-3-030-56286-1
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-56285-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-56287-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-56288-5
    Language: English
    Subjects: Sociology
    RVK:
    Keywords: Maschinelles Lernen ; Künstliche Intelligenz ; Sozialwissenschaften ; Aufsatzsammlung ; Aufsatzsammlung ; Aufsatzsammlung ; Aufsatzsammlung
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Author information: Roberge, Jonathan 1976-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9948613597502882
    Format: XV, 289 p. 10 illus., 7 illus. in color. , online resource.
    Edition: 1st ed. 2021.
    ISBN: 9783030562861
    Content: This book brings together the work of sociologists and historians along with perspectives from media studies, communication studies, cultural studies, and information studies to address the origins, practices, and possible futures of contemporary machine learning. From its foundations in 1950s and 1960s pattern recognition and neural network research to the modern-day social and technological dramas of DeepMind's AlphaGo, predictive political forecasting, and the governmentality of extractive logistics, machine learning has become controversial precisely because of its increased embeddedness and agency in our everyday lives. How can we disentangle the history of machine learning from conventional histories of artificial intelligence? How can machinic agents' capacity for novelty be theorized? Can reform initiatives for fairness and equity in AI and machine learning be realized, or are they doomed to cooptation and failure? And just what kind of "learning" does machine learning truly represent? Contributors empirically address these questions and more to provide a baseline for future research. Jonathan Roberge is an Associate Professor at the Institut National de la Recherche Scientifique in Montreal, Canada. He funded the Nenic Lab as part of the Canada Research Chair in Digital Culture he has held since 2012. His most recent edited volume is Algorithmic Cultures (2016). Michael Castelle is an Assistant Professor at the University of Warwick's Centre for Interdisciplinary Methodologies, UK and a Turing Fellow at the Alan Turing Institute, UK. He has a Ph.D. in Sociology from the University of Chicago and a Sc.B. in Computer Science from Brown University. Chapter 2 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
    Note: 1. Toward an End-to-End Sociology of 21st-Century Machine Learning -- 2. Mechanized Significance and Machine Learning: Why it Became Thinkable and Preferable to Teach Machines to Judge the World -- 3. What Kind of Learning Is Machine Learning? -- 4. The Other Cambridge Analytics: Early "Artificial Intelligence" in American Political Science -- 5. Machinic Encounters: A Relational Approach to the Sociology of AI -- 6. AlphaGo's Deep Play: Technological Breakthrough as Social Drama -- 7. Adversariality in Machine Learning Systems: On Neural Networks and the Limits of Knowledge -- 8. Planetary Intelligence -- 9. Critical Perspectives on Governance Mechanisms for AI/ML Systems.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783030562854
    Additional Edition: Printed edition: ISBN 9783030562878
    Additional Edition: Printed edition: ISBN 9783030562885
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV048599047
    Format: xv, 289 Seiten
    ISBN: 9783030562885 , 9783030562861
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-56285-4
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-56287-8
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-56288-5
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-3-030-56286-1
    Language: English
    Subjects: Sociology
    RVK:
    Keywords: Maschinelles Lernen ; Künstliche Intelligenz ; Sozialwissenschaften ; Aufsatzsammlung
    Author information: Roberge, Jonathan 1976-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783030562816?
Did you mean 9783030162863?
Did you mean 9783000552861?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages