Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    UID:
    almahu_9949083913402882
    Umfang: XXIV, 833 p. 159 illus., 145 illus. in color. , online resource.
    Ausgabe: 1st ed. 2021.
    ISBN: 9783030609900
    Serie: Studies in Systems, Decision and Control, 325
    Inhalt: This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative. .
    Anmerkung: The Cognitive Dialogue: A New Architecture for Perception and Cognition -- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems -- Quantum Reinforcement Learning in Changing Environment -- The Role of Thermodynamics in the Future Research Directions in Control and Learning -- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming -- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning -- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach -- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay -- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast -- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning -- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games -- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles -- Long-Term Impacts of Fair Machine Learning -- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization -- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization -- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics -- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning -- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications -- Reinforcement Learning Applications, An Industrial Perspective -- A Hybrid Dynamical Systems Perspective of Reinforcement Learning -- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras -- Mixed Modality Learning -- Computational Intelligence in Uncertainty Quantification for Learning Control and Games -- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback -- Robust Autonomous Driving with Humans in the Loop -- Boundedly Rational Reinforcement Learning for Secure Control.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783030609894
    Weitere Ausg.: Printed edition: ISBN 9783030609917
    Weitere Ausg.: Printed edition: ISBN 9783030609924
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham, Switzerland :Springer,
    UID:
    almafu_9959888247502883
    Umfang: 1 online resource (839 pages)
    ISBN: 3-030-60990-1
    Serie: Studies in Systems, Decision and Control ; Volume 325
    Anmerkung: Intro -- Preface -- Contents -- Part ITheory of Reinforcement Learning for Model-Free and Model-Based Control and Games -- 1 What May Lie Ahead in Reinforcement Learning -- References -- 2 Reinforcement Learning for Distributed Control and Multi-player Games -- 2.1 Introduction -- 2.2 Optimal Control of Continuous-Time Systems -- 2.2.1 IRL with Experience Replay Learning Technique ch2Modares2014Automatica,ch2Kamalapurkar2016 -- 2.2.2 mathcalHinfty Control of CT Systems -- 2.3 Nash Games -- 2.4 Graphical Games -- 2.4.1 Off-Policy RL for Graphical Games -- 2.5 Output Synchronization of Multi-agent Systems -- 2.6 Conclusion and Open Research Directions -- References -- 3 From Reinforcement Learning to Optimal Control: A Unified Framework for Sequential Decisions -- 3.1 Introduction -- 3.2 The Communities of Sequential Decisions -- 3.3 Stochastic Optimal Control Versus Reinforcement Learning -- 3.3.1 Stochastic Control -- 3.3.2 Reinforcement Learning -- 3.3.3 A Critique of the MDP Modeling Framework -- 3.3.4 Bridging Optimal Control and Reinforcement Learning -- 3.4 The Universal Modeling Framework -- 3.4.1 Dimensions of a Sequential Decision Model -- 3.4.2 State Variables -- 3.4.3 Objective Functions -- 3.4.4 Notes -- 3.5 Energy Storage Illustration -- 3.5.1 A Basic Energy Storage Problem -- 3.5.2 With a Time-Series Price Model -- 3.5.3 With Passive Learning -- 3.5.4 With Active Learning -- 3.5.5 With Rolling Forecasts -- 3.5.6 Remarks -- 3.6 Designing Policies -- 3.6.1 Policy Search -- 3.6.2 Lookahead Approximations -- 3.6.3 Hybrid Policies -- 3.6.4 Remarks -- 3.6.5 Stochastic Control, Reinforcement Learning, and the Four Classes of Policies -- 3.7 Policies for Energy Storage -- 3.8 Extension to Multi-agent Systems -- 3.9 Observations -- References -- 4 Fundamental Design Principles for Reinforcement Learning Algorithms -- 4.1 Introduction. , 4.1.1 Stochastic Approximation and Reinforcement Learning -- 4.1.2 Sample Complexity Bounds -- 4.1.3 What Will You Find in This Chapter? -- 4.1.4 Literature Survey -- 4.2 Stochastic Approximation: New and Old Tricks -- 4.2.1 What is Stochastic Approximation? -- 4.2.2 Stochastic Approximation and Learning -- 4.2.3 Stability and Convergence -- 4.2.4 Zap-Stochastic Approximation -- 4.2.5 Rates of Convergence -- 4.2.6 Optimal Convergence Rate -- 4.2.7 TD and LSTD Algorithms -- 4.3 Zap Q-Learning: Fastest Convergent Q-Learning -- 4.3.1 Markov Decision Processes -- 4.3.2 Value Functions and the Bellman Equation -- 4.3.3 Q-Learning -- 4.3.4 Tabular Q-Learning -- 4.3.5 Convergence and Rate of Convergence -- 4.3.6 Zap Q-Learning -- 4.4 Numerical Results -- 4.4.1 Finite State-Action MDP -- 4.4.2 Optimal Stopping in Finance -- 4.5 Zap-Q with Nonlinear Function Approximation -- 4.5.1 Choosing the Eligibility Vectors -- 4.5.2 Theory and Challenges -- 4.5.3 Regularized Zap-Q -- 4.6 Conclusions and Future Work -- References -- 5 Mixed Density Methods for Approximate Dynamic Programming -- 5.1 Introduction -- 5.2 Unconstrained Affine-Quadratic Regulator -- 5.3 Regional Model-Based Reinforcement Learning -- 5.3.1 Preliminaries -- 5.3.2 Regional Value Function Approximation -- 5.3.3 Bellman Error -- 5.3.4 Actor and Critic Update Laws -- 5.3.5 Stability Analysis -- 5.3.6 Summary -- 5.4 Local (State-Following) Model-Based Reinforcement Learning -- 5.4.1 StaF Kernel Functions -- 5.4.2 Local Value Function Approximation -- 5.4.3 Actor and Critic Update Laws -- 5.4.4 Analysis -- 5.4.5 Stability Analysis -- 5.4.6 Summary -- 5.5 Combining Regional and Local State-Following Approximations -- 5.6 Reinforcement Learning with Sparse Bellman Error Extrapolation -- 5.7 Conclusion -- References -- 6 Model-Free Linear Quadratic Regulator. , 6.1 Introduction to a Model-Free LQR Problem -- 6.2 A Gradient-Based Random Search Method -- 6.3 Main Results -- 6.4 Proof Sketch -- 6.4.1 Controlling the Bias -- 6.4.2 Correlation of "0362 f(K) and f(K) -- 6.5 An Example -- 6.6 Thoughts and Outlook -- References -- Part IIConstraint-Driven and Verified RL -- 7 Adaptive Dynamic Programming in the Hamiltonian-Driven Framework -- 7.1 Introduction -- 7.1.1 Literature Review -- 7.1.2 Motivation -- 7.1.3 Structure -- 7.2 Problem Statement -- 7.3 Hamiltonian-Driven Framework -- 7.3.1 Policy Evaluation -- 7.3.2 Policy Comparison -- 7.3.3 Policy Improvement -- 7.4 Discussions on the Hamiltonian-Driven ADP -- 7.4.1 Implementation with Critic-Only Structure -- 7.4.2 Connection to Temporal Difference Learning -- 7.4.3 Connection to Value Gradient Learning -- 7.5 Simulation Study -- 7.6 Conclusion -- References -- 8 Reinforcement Learning for Optimal Adaptive Control of Time Delay Systems -- 8.1 Introduction -- 8.2 Problem Description -- 8.3 Extended State Augmentation -- 8.4 State Feedback Q-Learning Control of Time Delay Systems -- 8.5 Output Feedback Q-Learning Control of Time Delay Systems -- 8.6 Simulation Results -- 8.7 Conclusions -- References -- 9 Optimal Adaptive Control of Partially Uncertain Linear Continuous-Time Systems with State Delay -- 9.1 Introduction -- 9.2 Problem Statement -- 9.3 Linear Quadratic Regulator Design -- 9.3.1 Periodic Sampled Feedback -- 9.3.2 Event Sampled Feedback -- 9.4 Optimal Adaptive Control -- 9.4.1 Periodic Sampled Feedback -- 9.4.2 Event Sampled Feedback -- 9.4.3 Hybrid Reinforcement Learning Scheme -- 9.5 Perspectives on Controller Design with Image Feedback -- 9.6 Simulation Results -- 9.6.1 Linear Quadratic Regulator with Known Internal Dynamics -- 9.6.2 Optimal Adaptive Control with Unknown Drift Dynamics -- 9.7 Conclusion -- References. , 10 Dissipativity-Based Verification for Autonomous Systems in Adversarial Environments -- 10.1 Introduction -- 10.1.1 Related Work -- 10.1.2 Contributions -- 10.1.3 Structure -- 10.1.4 Notation -- 10.2 Problem Formulation -- 10.2.1 (Q,S,R)-Dissipative and L2-Gain Stable Systems -- 10.3 Learning-Based Distributed Cascade Interconnection -- 10.4 Learning-Based L2-Gain Composition -- 10.4.1 Q-Learning for L2-Gain Verification -- 10.4.2 L2-Gain Model-Free Composition -- 10.5 Learning-Based Lossless Composition -- 10.6 Discussion -- 10.7 Conclusion and Future Work -- References -- 11 Reinforcement Learning-Based Model Reduction for Partial Differential Equations: Application to the Burgers Equation -- 11.1 Introduction -- 11.2 Basic Notation and Definitions -- 11.3 RL-Based Model Reduction of PDEs -- 11.3.1 Reduced-Order PDE Approximation -- 11.3.2 Proper Orthogonal Decomposition for ROMs -- 11.3.3 Closure Models for ROM Stabilization -- 11.3.4 Main Result: RL-Based Closure Model -- 11.4 Extremum Seeking Based Closure Model Auto-Tuning -- 11.5 The Case of the Burgers Equation -- 11.6 Conclusion -- References -- Part IIIMulti-agent Systems and RL -- 12 Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Single-Agent RL -- 12.2.2 Multi-Agent RL Framework -- 12.3 Challenges in MARL Theory -- 12.3.1 Non-unique Learning Goals -- 12.3.2 Non-stationarity -- 12.3.3 Scalability Issue -- 12.3.4 Various Information Structures -- 12.4 MARL Algorithms with Theory -- 12.4.1 Cooperative Setting -- 12.4.2 Competitive Setting -- 12.4.3 Mixed Setting -- 12.5 Application Highlights -- 12.5.1 Cooperative Setting -- 12.5.2 Competitive Setting -- 12.5.3 Mixed Settings -- 12.6 Conclusions and Future Directions -- References. , 13 Computational Intelligence in Uncertainty Quantification for Learning Control and Differential Games -- 13.1 Introduction -- 13.2 Problem Formulation of Optimal Control for Uncertain Systems -- 13.2.1 Optimal Control for Systems with Parameters Modulated by Multi-dimensional Uncertainties -- 13.2.2 Optimal Control for Random Switching Systems -- 13.3 Effective Uncertainty Evaluation Methods -- 13.3.1 Problem Formulation -- 13.3.2 The MPCM -- 13.3.3 The MPCM-OFFD -- 13.4 Optimal Control Solutions for Systems with Parameter Modulated by Multi-dimensional Uncertainties -- 13.4.1 Reinforcement Learning-Based Stochastic Optimal Control -- 13.4.2 Q-Learning-Based Stochastic Optimal Control -- 13.5 Optimal Control Solutions for Random Switching Systems -- 13.5.1 Optimal Controller for Random Switching Systems -- 13.5.2 Effective Estimator for Random Switching Systems -- 13.6 Differential Games for Systems with Parameters Modulated by Multi-dimensional Uncertainties -- 13.6.1 Stochastic Two-Player Zero-Sum Game -- 13.6.2 Multi-player Nonzero-Sum Game -- 13.7 Applications -- 13.7.1 Traffic Flow Management Under Uncertain Weather -- 13.7.2 Learning Control for Aerial Communication Using Directional Antennas (ACDA) Systems -- 13.8 Summary -- References -- 14 A Top-Down Approach to Attain Decentralized Multi-agents -- 14.1 Introduction -- 14.2 Background -- 14.2.1 Reinforcement Learning -- 14.2.2 Multi-agent Reinforcement Learning -- 14.3 Centralized Learning, But Decentralized Execution -- 14.3.1 A Bottom-Up Approach -- 14.3.2 A Top-Down Approach -- 14.4 Centralized Expert Supervises Multi-agents -- 14.4.1 Imitation Learning -- 14.4.2 CESMA -- 14.5 Experiments -- 14.5.1 Decentralization Can Achieve Centralized Optimality -- 14.5.2 Expert Trajectories Versus Multi-agent Trajectories -- 14.6 Conclusion -- References. , 15 Modeling and Mitigating Link-Flooding Distributed Denial-of-Service Attacks via Learning in Stackelberg Games.
    Weitere Ausg.: ISBN 3-030-60989-8
    Sprache: Englisch
    Schlagwort(e): Llibres electrònics ; Llibres electrònics
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783030109905?
Meinten Sie 9783030005900?
Meinten Sie 9783030104900?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz