Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    UID:
    almafu_BV047552780
    Umfang: 1 Online-Ressource (xii, 527 Seiten) : , Illustrationen, Diagramme.
    ISBN: 978-3-030-70901-3
    Serie: Springer series in the data sciences
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-70900-6
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-70902-0
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-030-70903-7
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Statistik ; Data Science ; Maschinelles Lernen ; Lehrbuch
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Cover
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949177487102882
    Umfang: XII, 527 p. 148 illus., 130 illus. in color. , online resource.
    Ausgabe: 1st ed. 2021.
    ISBN: 9783030709013
    Serie: Springer Series in the Data Sciences,
    Inhalt: This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book's associated GitHub repository online. See what co-creators of the Julia language are saying about the book: Professor Alan Edelman, MIT: With "Statistics with Julia", Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.
    Anmerkung: Introducing Julia -- Basic Probability -- Probability Distributions -- Processing and Summarizing Data -- Statistical Inference Concepts -- Confidence Intervals -- Hypothesis Testing -- Linear Regression and Extensions -- Machine Learning Basics -- Simulation of Dynamic Models -- Appendix A: How-to in Julia -- Appendix B: Additional Julia Features -- Appendix C: Additional Packages.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783030709006
    Weitere Ausg.: Printed edition: ISBN 9783030709020
    Weitere Ausg.: Printed edition: ISBN 9783030709037
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almahu_BV048509522
    Umfang: xii, 527 Seiten : , Illustrationen, Diagramme (überwiegend farbig).
    ISBN: 978-3-030-70900-6 , 978-3-030-70903-7
    Serie: Springer series in the data sciences
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-030-70901-3
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Statistik ; Data Science ; Maschinelles Lernen
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783030309237?
Meinten Sie 9783030209087?
Meinten Sie 9783030009137?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz