Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949226666602882
    Umfang: XII, 282 p. 43 illus., 25 illus. in color. , online resource.
    Ausgabe: 1st ed. 2022.
    ISBN: 9783030746285
    Serie: Lecture Notes in Control and Information Sciences, 488
    Inhalt: This book, published in honor of Professor Laurent Praly on the occasion of his 65th birthday, explores the responses of some leading international authorities to new challenges in nonlinear and adaptive control. The mitigation of the effects of uncertainty and nonlinearity - ubiquitous features of real-world engineering and natural systems - on closed-loop stability and robustness being of crucial importance, the contributions report the latest research into overcoming these difficulties in: autonomous systems; reset control systems; multiple-input-multiple-output nonlinear systems; input delays; partial differential equations; population games; and data-driven control. Trends in Nonlinear and Adaptive Control presents research inspired by and related to Professor Praly's lifetime of contributions to control theory and is a valuable addition to the literature of advanced control.
    Anmerkung: 1. Introduction -- 2. Almost Feedback Linearization via Dynamic Extension: A Paradigm for Robust Semiglobal Stabilization -- 3. Neural, Hybrid Methods in Nonlinear System Identification -- 4. One the Role of Well-Posedness in Homotopy Methods for the Stability Analysis of Nonlinear Feedback Systems -- 5. Design of Multi-Agent System via Blended Dynamics Approach -- 6. Robust Adaptive Attenuation of Unknown Output Disturbances -- 7. Delay-Adaptive Observer-Based Control for Linear Systems with Unknown Input Delays -- 8. Adaptive Control for Systems with Time-Varying Parameters -- 9. Multi-Armed Bandits Revisited via Adaptive Control -- 10. Contributions to the Problem of High-Gain Observer Design for Systems of PDEs -- 11. Robust Reinforcement Learning for Optimal Stationary Control of Linear Systems with Additive and Multiplicative Noises.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783030746278
    Weitere Ausg.: Printed edition: ISBN 9783030746292
    Weitere Ausg.: Printed edition: ISBN 9783030746308
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Festschrift
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almafu_9960152514902883
    Umfang: 1 online resource (290 pages)
    ISBN: 3-030-74628-3
    Serie: Lecture Notes in Control and Information Sciences ; v.488
    Anmerkung: Intro -- Preface -- Contents -- 1 Almost Feedback Linearization via Dynamic Extension: a Paradigm for Robust Semiglobal Stabilization of Nonlinear MIMO Systems -- 1.1 Foreword -- 1.2 Invertibility and Feedback Linearization -- 1.3 Normal Forms of Uniformly Invertible Nonlinear Systems -- 1.3.1 Normal Forms -- 1.3.2 Strongly Minimum-Phase Systems -- 1.4 Robust (Semiglobal) Stabilization via Almost Feedback Linearization -- 1.4.1 Standing Assumptions -- 1.4.2 The Nominal Linearizing Feedback -- 1.4.3 Robust Feedback Design -- 1.5 Application to the Problem of Output Regulation -- 1.6 An Illustrative Example -- References -- 2 Continuous-Time Implementation of Reset Control Systems -- 2.1 Introduction -- 2.2 Objective and Primary Assumption -- 2.3 Continuous-Time Implementation and Main Result -- 2.4 Examples and Simulations -- 2.4.1 Example 2.1 Revisited -- 2.4.2 A Clegg Integrator Controlling a Single Integrator System -- 2.4.3 A Bank of Clegg Integrators Controlling a Strictly Passive System -- 2.4.4 A Bank of Stable FOREs Controlling a Detectable Passive System -- 2.5 Conclusion -- References -- 3 On the Role of Well-Posedness in Homotopy Methods for the Stability Analysis of Nonlinear Feedback Systems -- 3.1 Introduction -- 3.2 Signal Spaces -- 3.2.1 Examples of Signal Spaces -- 3.2.2 Composite Signals -- 3.3 Systems, Controllability, and Causality -- 3.3.1 Controllability -- 3.3.2 Input/Output Systems, Causality, and Hemicontinuity -- 3.4 Stability and Gain of IO Systems -- 3.4.1 Finite-Gain Stability -- 3.4.2 Relationships Between Gain, Small-Signal Gain, and Norm Gain -- 3.4.3 Stability Robustness in the Gap Topology -- 3.4.4 Stability via Homotopy -- 3.5 Stability of Interconnections -- 3.5.1 Well-Posed Interconnections -- 3.5.2 Regular Systems -- 3.5.3 Integral Quadratic Constraints -- 3.6 Summary -- 3.7 Appendix -- References. , 4 Design of Heterogeneous Multi-agent System for Distributed Computation -- 4.1 Introduction -- 4.2 Strong Diffusive State Coupling -- 4.2.1 Finding the Number of Agents Participating in the Network -- 4.2.2 Distributed Least-Squares Solver -- 4.2.3 Distributed Median Solver -- 4.2.4 Distributed Optimization: Optimal Power Dispatch -- 4.3 Strong Diffusive Output Coupling -- 4.3.1 Synchronization of Heterogeneous Liénard Systems -- 4.3.2 Distributed State Estimation -- 4.4 General Description of Blended Dynamics -- 4.4.1 Distributed State Observer with Rank-Deficient Coupling -- 4.5 Robustness of Emergent Collective Behavior -- 4.6 More than Linear Coupling -- 4.6.1 Edge-Wise Funnel Coupling -- 4.6.2 Node-Wise Funnel Coupling -- References -- 5 Contributions to the Problem of High-Gain Observer Design for Hyperbolic Systems -- 5.1 Introduction -- 5.2 Problem Description and Solutions -- 5.2.1 Triangular Form for Observer Design -- 5.2.2 The High-Gain Observer Design Problem -- 5.3 Observer Design for Systems with a Single Velocity -- 5.3.1 Problem Statement and Requirements -- 5.3.2 Direct Solvability of the H-GODP -- 5.4 Observer Design for Systems with Distinct Velocities -- 5.4.1 System Requirements and Main Approach -- 5.4.2 Indirect Solvability of the H-GODP -- 5.5 Conclusion -- References -- 6 Robust Adaptive Disturbance Attenuation -- 6.1 Introduction -- 6.2 Problem Formulation and Objectives -- 6.2.1 Preliminaries and Notation -- 6.3 Known Stable Plants: SISO Systems -- 6.3.1 Discrete-Time Systems -- 6.3.2 Continuous-Time Systems -- 6.4 Known Stable Plants: MIMO Systems -- 6.4.1 Discrete-Time Systems -- 6.4.2 Continuous-Time Systems -- 6.5 Unknown Minimum-Phase Plants: SISO Systems -- 6.5.1 Non-adaptive Case: Known Plant and Known Disturbance Frequencies -- 6.5.2 Adaptive Case: Unknown Plant and Unknown Disturbance -- 6.6 Numerical Simulation. , 6.6.1 SISO Discrete-Time Systems with Known Plant Model -- 6.6.2 SISO Continuous-Time Systems with Known Plant Model -- 6.6.3 MIMO Discrete-Time Systems with Known Plant Model -- 6.6.4 SISO Discrete-Time Systems with Unknown Plant Model -- 6.7 Conclusion -- References -- 7 Delay-Adaptive Observer-Based Control for Linear Systems with Unknown Input Delays -- 7.1 Introduction -- 7.1.1 Adaptive Control for Time-Delay Systems and PDEs -- 7.1.2 Results in This Chapter: Adaptive Control for Uncertain Linear Systems with Input Delays -- 7.2 Adaptive Control for Linear Systems with Discrete Input Delays -- 7.2.1 Global Stabilization under Uncertain Plant State -- 7.2.2 Global Stabilization Under Uncertain Delay -- 7.2.3 Local Stabilization Under Uncertain Delay and Actuator State -- 7.3 Observer-Based Adaptive Control for Linear Systems with Discrete Input Delays -- 7.4 Adaptive Control for Linear Systems with Distributed Input Delays -- 7.5 Beyond the Results Given Here -- References -- 8 Adaptive Control for Systems with Time-Varying Parameters-A Survey -- 8.1 Introduction -- 8.2 Motivating Examples and Preliminary Result -- 8.2.1 Parameter in the Feedback Path -- 8.2.2 Parameter in the Input Path -- 8.2.3 Preliminary Result: State-Feedback Design for Unmatched Parameters -- 8.3 Output-Feedback Design -- 8.3.1 System Reparameterization -- 8.3.2 Inverse Dynamics -- 8.3.3 Filter Design -- 8.3.4 Controller Design -- 8.4 Simulations -- 8.5 Conclusions -- References -- 9 Robust Reinforcement Learning for Stochastic Linear Quadratic Control with Multiplicative Noise -- 9.1 Introduction -- 9.2 Problem Formulation and Preliminaries -- 9.3 Robust Policy Iteration -- 9.4 Multi-trajectory Optimistic Least-Squares Policy Iteration -- 9.5 An Illustrative Example -- 9.6 Conclusions -- References -- Index.
    Weitere Ausg.: ISBN 3-030-74627-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    b3kat_BV047498847
    Umfang: xii, 283 Seiten , Illustrationen, Diagramme
    ISBN: 9783030746278
    Serie: Lecture notes in control and information sciences 488
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-030-74628-5
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Festschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783030340285?
Meinten Sie 9783030446215?
Meinten Sie 9783030366285?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz