Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almafu_BV047832176
    Umfang: 1 Online-Ressource.
    ISBN: 978-3-030-89010-0
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-3-030-89009-4
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-030-89012-4
    Sprache: Englisch
    Fachgebiete: Informatik , Land-, Forst-, Fischerei- und Hauswirtschaft. Gartenbau , Biologie
    RVK:
    RVK:
    RVK:
    RVK:
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham : Springer Nature | Cham :Springer International Publishing AG,
    UID:
    almafu_9960127963702883
    Umfang: 1 online resource (707 pages)
    ISBN: 3-030-89010-4
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: English
    Weitere Ausg.: ISBN 3-030-89009-0
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    gbv_1794556680
    Umfang: 1 Online-Ressource (691 p.)
    ISBN: 9783030890100
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool
    Anmerkung: English
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    kobvindex_HPB1294307405
    Umfang: 1 online resource (xxiv, 691 pages) : , illustrations (some color).
    ISBN: 9783030890100 , 3030890104
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: Preface -- Chapter 1 -- General elements of genomic selection and statistical learning -- Chapter. 2 -- Preprocessing tools for data preparation -- Chapter. 3 -- Elements for building supervised statistical machine learning models -- Chapter. 4 -- Overfitting, model tuning and evaluation of prediction performance -- Chapter. 5 -- Linear Mixed Models -- Chapter. 6 -- Bayesian Genomic Linear Regression -- Chapter. 7 -- Bayesian and classical prediction models for categorical and count data -- Chapter. 8 -- Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- Chapter. 9 -- Support vector machines and support vector regression -- Chapter. 10 -- Fundamentals of artificial neural networks and deep learning -- Chapter. 11 -- Artificial neural networks and deep learning for genomic prediction of continuous outcomes -- Chapter. 12 -- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes -- Chapter. 13 -- Convolutional neural networks -- Chapter. 14 -- Functional regression -- Chapter. 15 -- Random forest for genomic prediction.
    Weitere Ausg.: 3030890090
    Weitere Ausg.: 9783030890094
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    almahu_BV048319474
    Umfang: XXIV, 691 Seiten : , Illustrationen, Diagramme.
    ISBN: 978-3-030-89012-4
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-030-89010-0
    Sprache: Englisch
    Fachgebiete: Informatik , Land-, Forst-, Fischerei- und Hauswirtschaft. Gartenbau , Biologie
    RVK:
    RVK:
    RVK:
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Cham : Springer Nature | Cham :Springer International Publishing AG,
    UID:
    edocfu_9960127963702883
    Umfang: 1 online resource (707 pages)
    ISBN: 3-030-89010-4
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: English
    Weitere Ausg.: ISBN 3-030-89009-0
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Cham : Springer Nature | Cham :Springer International Publishing AG,
    UID:
    edoccha_9960127963702883
    Umfang: 1 online resource (707 pages)
    ISBN: 3-030-89010-4
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: English
    Weitere Ausg.: ISBN 3-030-89009-0
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Cham : Springer Nature | Cham :Springer International Publishing AG,
    UID:
    almahu_9949281615202882
    Umfang: 1 online resource (707 pages)
    ISBN: 3-030-89010-4
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: English
    Weitere Ausg.: ISBN 3-030-89009-0
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    gbv_1786332000
    Umfang: 1 Online-Ressource(XXIV, 691 p. 113 illus., 61 illus. in color.)
    Ausgabe: 1st ed. 2022.
    ISBN: 9783030890100
    Serie: Springer eBook Collection
    Inhalt: Preface -- Chapter 1 -- General elements of genomic selection and statistical learning -- Chapter. 2 -- Preprocessing tools for data preparation -- Chapter. 3 -- Elements for building supervised statistical machine learning models -- Chapter. 4 -- Overfitting, model tuning and evaluation of prediction performance -- Chapter. 5 -- Linear Mixed Models -- Chapter. 6 -- Bayesian Genomic Linear Regression -- Chapter. 7 -- Bayesian and classical prediction models for categorical and count data -- Chapter. 8 -- Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- Chapter. 9 -- Support vector machines and support vector regression -- Chapter. 10 -- Fundamentals of artificial neural networks and deep learning -- Chapter. 11 -- Artificial neural networks and deep learning for genomic prediction of continuous outcomes -- Chapter. 12 -- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes -- Chapter. 13 -- Convolutional neural networks -- Chapter. 14 -- Functional regression -- Chapter. 15 -- Random forest for genomic prediction.
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: Open Access
    Weitere Ausg.: ISBN 9783030890094
    Weitere Ausg.: ISBN 9783030890117
    Weitere Ausg.: ISBN 9783030890124
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030890094
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030890117
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030890124
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    almahu_9949241895102882
    Umfang: XXIV, 691 p. 113 illus., 61 illus. in color. , online resource.
    Ausgabe: 1st ed. 2022.
    ISBN: 9783030890100
    Inhalt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
    Anmerkung: Preface -- Chapter 1 -- General elements of genomic selection and statistical learning -- Chapter. 2 -- Preprocessing tools for data preparation -- Chapter. 3 -- Elements for building supervised statistical machine learning models -- Chapter. 4 -- Overfitting, model tuning and evaluation of prediction performance -- Chapter. 5 -- Linear Mixed Models -- Chapter. 6 -- Bayesian Genomic Linear Regression -- Chapter. 7 -- Bayesian and classical prediction models for categorical and count data -- Chapter. 8 -- Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- Chapter. 9 -- Support vector machines and support vector regression -- Chapter. 10 -- Fundamentals of artificial neural networks and deep learning -- Chapter. 11 -- Artificial neural networks and deep learning for genomic prediction of continuous outcomes -- Chapter. 12 -- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes -- Chapter. 13 -- Convolutional neural networks -- Chapter. 14 -- Functional regression -- Chapter. 15 -- Random forest for genomic prediction.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783030890094
    Weitere Ausg.: Printed edition: ISBN 9783030890117
    Weitere Ausg.: Printed edition: ISBN 9783030890124
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz