Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    almahu_9949335078702882
    Umfang: VIII, 156 p. 124 illus., 109 illus. in color. , online resource.
    Ausgabe: 1st ed. 2022.
    ISBN: 9783031041228
    Serie: Conference Proceedings of the Society for Experimental Mechanics Series,
    Inhalt: Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics.
    Anmerkung: Chapter 1. Model Updating for Nonlinear Dynamic Digital Twins Using Data-Based Inverse Mapping Models -- Chapter 2. Deep Reinforcement Learning for Active Structure Stabilization -- Chapter 3. Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm -- Chapter 4. Environmental-Insensitive Damage Features Based on Transmissibility Coherence -- Chapter 5. Transmittance Anomalies for Model-Based Damage Detection with Finite Element Generated Data and Deep Learning -- Chapter 6. Machine Learning based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults -- Chapter 7. Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Modeling -- Chapter 8. On Aspects of Geometry in SHM and Population-Based SHM -- Chapter 9. A Robust PCA-based Framework for Long-Term Condition Monitoring of Civil Infrastructures -- Chapter 10. Data-Driven Parameter Identification for Turbomachinery Blisks -- Chapter 11. Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and Convolutional Neural Networks -- Chapter 12. Development of a Surrogate Model for Structural Health Monitoring of a UAV Wing Spar -- Chapter 13. On a Description of Aeroplanes and Aeroplane Components using Irreducible Element Models -- Chapter 14. Input Estimation of Four-DOF Nonlinear Building Using Probabilistic Recurrent Neural Network -- Chapter 15. Simulation-Based Damage Detection for Composite Structures with Machine Learning Techniques -- Chapter 16. Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks -- Chapter 17. Multi-Layer Input Deep Learning Applied to Ultrasonic Wavefield Measurements.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031041211
    Weitere Ausg.: Printed edition: ISBN 9783031041235
    Weitere Ausg.: Printed edition: ISBN 9783031041242
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031001222?
Meinten Sie 9783030147228?
Meinten Sie 9783030041229?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz