Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Springer
    UID:
    b3kat_BV048541520
    Format: 1 Online-Ressource (IX, 312 p. 166 illus., 106 illus. in color)
    Edition: 1st ed. 2022
    ISBN: 9783031092657
    Series Statement: CISM International Centre for Mechanical Sciences, Courses and Lectures 607
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-09263-3
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-09264-0
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9949450757602882
    Format: IX, 312 p. 166 illus., 106 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783031092657
    Series Statement: CISM International Centre for Mechanical Sciences, Courses and Lectures, 607
    Content: The book provides basic and recent research insights concerning the small scale modeling and simulation of turbulent multi-phase flows. By small scale, it has to be understood that the grid size for the simulation is smaller than most of the physical time and space scales of the problem. Small scale modeling of multi-phase flows is a very popular topic since the capabilities of massively parallel computers allows to go deeper into the comprehension and characterization of realistic flow configurations and at the same time, many environmental and industrial applications are concerned such as nuclear industry, material processing, chemical reactors, engine design, ocean dynamics, pollution and erosion in rivers or on beaches. The work proposes a complete and exhaustive presentation of models and numerical methods devoted to small scale simulation of incompressible turbulent multi-phase flows from specialists of the research community. Attention has also been paid to promote illustrations and applications, multi-phase flows and collaborations with industry. The idea is also to bring together developers and users of different numerical approaches and codes to share their experience in the development and validation of the algorithms and discuss the difficulties and limitations of the different methods and their pros and cons. The focus will be mainly on fixed-grid methods, however adaptive grids will be also partly broached, with the aim to compare and validate the different approaches and models.
    Note: Introduction and motivations -- DNS of resolved scale interfacial and free surface flows with fictitious domains -- Interface tracking -- Adaptive Mesh Refinement -- Numerical treatment of constraints with fictitious domains -- Compressible (low-mach) two-phase flows -- Large eddy simulation of resolved scale interfacial flows -- DNS of particulate flows -- Multiscale Euler-Lagrange coupling -- Applications and perspectives.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783031092633
    Additional Edition: Printed edition: ISBN 9783031092640
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almafu_9960901282102883
    Format: 1 online resource (314 pages)
    ISBN: 3-031-09265-1
    Series Statement: CISM International Centre for Mechanical Sciences ; v.607
    Note: Intro -- Acknowledgements -- Collaborators -- Technical Aspects -- Financial Support -- Contents -- 1 Introduction and Motivations -- 1.1 Governing Equations for DNS of Multiphase Flows -- 1.1.1 Mass Conservation -- 1.1.2 Momentum Conservation -- 1.1.3 Fluid Assumptions -- 1.2 Interface and Jump Conditions -- 1.2.1 Surface Tension -- 1.2.2 Viscosity -- 1.3 The Final Model -- 2 DNS of Resolved Scale Interfacial and Free Surface Flows with Fictitious Domains -- 2.1 One-Fluid Model -- 2.2 General Discretization and Solvers -- 2.2.1 Pressure-Velocity Coupling and Solvers -- 2.2.2 Jump Conditions -- 2.2.3 Boundary Conditions -- 2.2.4 Poisson Pressure Solver -- 2.3 Methods for Handling Interfaces -- 2.3.1 Interface Tracking Methods -- 2.3.2 Front-Capturing (Implicit Interface) -- 2.3.3 SPH Methods -- 2.4 Capillary Effects and Jump Conditions at Interface -- 2.4.1 Ghost Fluid -- 2.4.2 Continuum Surface Force -- 2.5 Validations of Interface Tracking and Fictitious Domains -- 2.5.1 Comparison of Interface Tracking Methods -- 2.5.2 Density and Viscosity Averages -- 2.5.3 Capillary Forces -- 3 Interface Tracking -- 3.1 VOF -- 3.1.1 Introduction to VOF Methods -- 3.1.2 Initialization of the Color Function C -- 3.1.3 A Library to Initialize the Volume Fraction Field -- 3.1.4 Algebraic Methods for the Advection of the Color Function -- 3.1.5 Simple Geometric Methods for the Advection of the Color Function -- 3.1.6 VOF-PLIC Methods: Interface Reconstruction -- 3.1.7 VOF-PLIC Methods: Interface Advection -- 3.2 Level Set -- 3.2.1 Level Set Definition -- 3.2.2 Numerical Method -- 3.2.3 Coupled Level-Set Volume of Fluid -- 3.2.4 Advection of the Level-Set Function and the Volume Fraction -- 3.3 Front Tracking -- 4 Adaptive Mesh Refinement -- 4.1 Introduction -- 4.2 AMR -- 4.3 Poisson Solver -- 4.4 Numerical Results. , 5 Numerical Treatment of Constraints with Fictitious Domains -- 5.1 Augmented Lagrangian Methods -- 5.2 Penalty Methods -- 5.3 Remarks on Time Splitting Approaches -- 5.4 Validation of Penalty Techniques -- 6 Compressible (Low-Mach) Two-Phase Flows -- 6.1 Mass Conservation -- 6.2 Momentum Conservation -- 6.3 Energy Conservation -- 6.4 Comparison with Classical ``Low Mach Number'' Model -- 6.5 Synthesis of Models -- 6.6 Validation of Isothermal Compressible One-Fluid Model -- 7 Large Eddy Simulation of Resolved Scale Interfacial Flows -- 7.1 Filtering 1-Fluid Navier-Stokes Equations-Continuous Media Framework -- 7.2 Filtering Discrete Mechanics Equations -- 7.3 Structural LES and Approximate Deconvolution Models (ADM) -- 7.4 LES of Multiphase Flows -- 8 DNS of Particulate Flows -- 8.1 Fictitious Domain and Penalty Approaches -- 8.1.1 Physical Characteristics of the Equivalent Fluid -- 8.1.2 Eulerian-Lagrangian VOF Method for Particle Tracking -- 8.1.3 Numerical Modeling of Particle Interaction -- 8.1.4 Parallel Implementation -- 8.1.5 Sum up of the Implemented Eulerian-Lagrangian Algorithm -- 8.2 Validations -- 8.2.1 Monodispersed Arrangements of Spheres -- 8.2.2 Bidisperse Arrangements of Spheres -- 8.2.3 Fluidized Beds -- 8.2.4 Interaction Between Particles and Turbulence -- 9 Multiscale Euler-Lagrange Coupling -- 9.1 Introduction -- 9.2 Governing Equations -- 9.3 Resolved Liquid Structures-Eulerian Modelling -- 9.3.1 Interface Tracking -- 9.3.2 Temporal Integration -- 9.3.3 Adaptive Mesh Refinement -- 9.4 Multi-scale Approach -- 9.4.1 Treatment of Medium Structures -- 9.4.2 Small Droplets -- 9.5 Results and Validation -- 9.5.1 Drop in a Uniform Flow -- 9.5.2 Drop-Free Surface Collision -- 9.5.3 Assisted Atomization of a Liquid Sheet -- 10 Applications and Perspectives -- Appendix Bibliography.
    Additional Edition: Print version: Vincent, Stéphane Small Scale Modeling and Simulation of Incompressible Turbulent Multi-Phase Flow Cham : Springer International Publishing AG,c2022 ISBN 9783031092633
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783030002657?
Did you mean 9783030192457?
Did you mean 9783030792657?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages