Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Person/Organisation
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing,
    UID:
    almafu_BV048497077
    Umfang: 1 Online-Ressource (XVII, 289 Seiten) : , Illustrationen.
    ISBN: 978-3-031-10717-7
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-10716-0
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-10718-4
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-10719-1
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    UID:
    gbv_1816988227
    Umfang: 1 Online-Ressource(XVII, 289 p. 1 illus.)
    Ausgabe: 1st ed. 2022.
    ISBN: 9783031107177
    Inhalt: 1. Traditional Kernel Regression -- 2. Kernel Ridge Regression -- 3. Optimal Scaling vs Kernel Ridge Regression -- 4. Examples of Published Kernel Ridge Regression Research So Far -- 5. Some Terminology -- 6. Effect of Being Blind on Age/Sex Adjusted Mortality Rate, 11630 Patients, Traditional Regressions vs Kernel Ridge Regression -- 7. Effect of Old Treatment on New Treatment, 35 patients, Traditional Regression vs Kernel Ridge Regression -- 8. Effect of Gene Expressions on Drug Efficacy, 250 Patients, Traditional Regressions vs Kernel Ridge Regression -- 9. Effect of Gender, Treatment, and Their Interaction on Numbers of Paroxysmal Atrial Fibrillations, 40 Patients, Traditional Regressions vs Kernel Ridge Regression -- 10. Effect of Laboratory Predictors on Septic Mortality, 200 Patients, Traditional Regressions vs Kernel Ridge Regression -- 11. Effect of Times on C-reactive Protein Levels, 18 Months, Traditional Regressions vs Kernel Ridge Regression -- 12. Effect of Different Dosages of Prednisone and Beta-agonist on Peakflow, 78 Patients, Traditional Regressions vs Kernel Ridge Regression -- 13. Effect of Race, Age, and Gender on Physical Strength, 60 Patients, Traditional Regressions vs Kernel Ridge Regression -- 14. Effect of Treatment, Age, Gender, and Co-morbidity on Hours of Sleep, 20 Patients, Traditional Regressions vs Kernel Ridge Regression -- 15. Effect of Counseling Frequency and Non-compliance on Monthly Stools, 35 Constipated Patients, Traditional Regressions vs Kernel Ridge Regression -- 16. Effect of Treatment Modality, Counseling, and Satisfaction with Doctor on Quality of Life, 450 Patients, Traditional Regressions vs Kernel Ridge Regression -- 17. Effect of Department and Patient Age Class on Risk of Falling out of Bed, 55 Patients, Traditional Regressions vs Kernel Ridge Regression -- 18. Effect of Diet, Gender, Sport, and Medical Treatment on LDL Cholesterol Reduction, 953 Patients, Traditional Regressions vs Kernel Ridge Regression -- 19. Effect of Gender, Age, Weight, and Height on Measured Body Surface, 90 Patients, Traditional Regressions vs Kernel Ridge Regression -- 20. Effect of General Practitioners' Age, Education, and Type of Practice on Lifestyle Advise Given, 139 Physicians, Traditional Regressions vs Kernel Ridge Regression -- 21. Effect of Treatment, Psychological, and Social Scores on numbers of Paroxysmal Atrial Fibrillations, 50 Patients, Traditional Regressions vs Kernel Ridge Regression -- 22. Effects of Various Predictors on Numbers of Convulsions, 3390 Patients, Traditional vs Kernel Ridge Regression -- 23. Effects of Foods Served on Breakfast Taken, 252 Persons, Traditional Regressions and Multinomial Logistic Regression vs Kernel Ridge Regression -- 24. Effect on Anorexia of Personal Factors, 217 Persons, Traditional Regression vs Kernel Ridge Regression -- 25. Effect of Physical Exercise, Calorie Intake, and Their Interaction, on Weight Loss, 64 Patients, Traditional Regressions vs Kernel Ridge Regression -- 26. Summaries.
    Inhalt: IBM (international business machines) has published in its SPSS statistical software 2022 update a very important novel regression method entitled Kernel Ridge Regression (KRR). It is an extension of the currently available regression methods, and is suitable for pattern recognition in high dimensional data, particularly, when alternative methods fail. Its theoretical advantages are plenty and include the kernel trick for reduced arithmetic complexity, estimation of uncertainty by Gaussians unlike histograms, corrected data-overfit by ridge regularization, availability of 8 alternative kernel density models for datafit. A very exciting and wide array of preliminary KRR research has already been published by major disciplines (like studies in quantum mechanics and nuclear physics, studies of molecular affinity / dynamics, atomisation energy studies, but also forecasting economics studies, IoT (internet of things) studies for e-networks, plant stress response studies, big data streaming studies, etc). In contrast, it is virtually unused in clinical research. This edition is the first textbook and tutorial of kernel ridge regressions for medical and healthcare students as well as recollection / update bench, and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regression analyses. Step by step analyses of over 20 data files stored at Supplementary Files at Springer Interlink are included for self-assessment. We should add that the authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics (2012-2015) and Professor Cleophas is past-president of the American College of Angiology (2000-2002). From their expertise they should be able to make adequate selections of modern KRR methods for the benefit of physicians, students, and investigators. The authors have been working and publishing together for 24 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is not mathematics but rather a discipline at the interface of biology and mathematics.
    Weitere Ausg.: ISBN 9783031107160
    Weitere Ausg.: ISBN 9783031107184
    Weitere Ausg.: ISBN 9783031107191
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783031107160
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783031107184
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783031107191
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031071591?
Meinten Sie 9783031071911?
Meinten Sie 9783030104191?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz