Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Access
  • 1
    UID:
    almahu_9949419781802882
    Format: XXIII, 519 p. 91 illus., 82 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783031118623
    Series Statement: Springer Theses, Recognizing Outstanding Ph.D. Research,
    Content: This book provides a remarkable and complete survey of important questions at the interface between theoretical particle physics and cosmology. After discussing the theoretical and experimental physics revolution that led to the rise of the Standard Model in the past century, the author reviews all the major open puzzles, among them the hierarchy problem, the small value of the cosmological constant, the matter-antimatter asymmetry, and the dark matter enigma, including the state-of-the-art regarding proposed solutions. Also addressed are the rapidly expanding fields of thermal dark matter, cosmological first-order phase transitions and gravitational-wave signatures. In addition, the book presents the original and interdisciplinary PhD research work of the author relating to Weakly-Interacting-Massive-Particles around the TeV scale, which are among the most studied dark matter candidates. Motivated by the absence of experimental evidence for such particles, this thesis explores the possibility that dark matter is much heavier than what is conventionally assumed.
    Note: Introduction -- Standard Model of Elementary Particles -- Standard Model of Cosmology -- Thermal Dark Matter -- Homeopathic Dark Matter -- First-order Cosmological Phase Transition.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783031118616
    Additional Edition: Printed edition: ISBN 9783031118630
    Additional Edition: Printed edition: ISBN 9783031118647
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edoccha_9960962484502883
    Format: 1 online resource (534 pages)
    ISBN: 9783031118623
    Series Statement: Springer Theses Series
    Note: Intro -- Supervisors' Foreword -- Abstract -- Publications Related to This Thesis -- Acknowledgements -- Contents -- About the Author -- 1 Introduction -- References -- 2 Standard Model of Elementary Particles -- 2.1 Fields and Symmetries -- 2.1.1 The Lorentz Representations -- 2.1.2 The Gauge Interactions -- 2.1.3 The Matter Content -- 2.1.4 The Higgs Field -- 2.2 The Standard Model in a Nutshell -- 2.2.1 The Lagrangian -- 2.2.2 Quantum Chromodynamics -- 2.2.3 Electroweak Symmetry Breaking -- 2.2.4 Weak CP Violation -- 2.2.5 Anomaly Cancellation -- 2.2.6 Strong CP Violation -- 2.3 Open Problems -- 2.3.1 Hierarchy Problem -- 2.3.2 Neutrino Oscillations -- 2.3.3 Flavor Hierarchy Problem -- 2.3.4 Strong CP Problem -- References -- 3 Standard Model of Cosmology -- 3.1 The normal upper LamdaΛCDM Cosmological Model -- 3.1.1 A Homogeneous and Isotropic Expanding Universe -- 3.1.2 Energy Content of the Universe -- 3.2 The Hot Big-Bang Scenario -- 3.2.1 Thermal Equilibrium -- 3.2.2 Beyond Thermal Equilibrium -- 3.3 Inflation -- 3.3.1 The Homogeneity Problem -- 3.3.2 The Flatness Problem -- 3.3.3 The Solution: Shrinking the Comoving Hubble Radius -- 3.3.4 Slow-Roll Inflation -- 3.4 Gravitational Waves of Primordial Origin -- 3.4.1 Linearized Wave Solutions of Einstein Equations -- 3.4.2 Energy of Gravitational-Waves -- 3.4.3 Cosmological Signals -- 3.5 Open Problems -- 3.5.1 Cosmological Constant Problem -- 3.5.2 Matter-Anti-Matter Asymmetry -- 3.5.3 Dark Matter Puzzle -- 3.5.4 The Fragility of normal upper LamdaΛCDM -- 3.5.5 The Hubble Tension -- 3.5.6 The 21-cm Anomaly -- References -- 4 Thermal Dark Matter -- 4.1 Production Mechanism -- 4.1.1 The Boltzmann Equation -- 4.1.2 Freeze-In Versus Freeze-Out -- 4.1.3 Exceptions -- 4.2 The WIMP Paradigm -- 4.2.1 Motivations -- 4.2.2 The WIMP Abundance -- 4.2.3 Minimal WIMP Under Pressure. , 4.2.4 Warm Dark Matter -- 4.3 Heavy WIMP -- 4.3.1 Breakdown of Perturbation Theory -- 4.3.2 Sommerfeld Enhancement -- 4.3.3 Bound-State-Formation -- 4.3.4 The Unitary Bound -- 4.A Unitary Bound on Cross-Sections -- 4.A.1 Partial-Wave Expansion of the Cross-Section -- 4.A.2 Unitarity of the Partial-Wave Expansion -- 4.B Computation of the Sommerfeld Factor -- 4.B.1 The Schrödinger Equation -- 4.B.2 Coulomb Potential -- 4.B.3 Yukawa Potential -- References -- 5 Homeopathic Dark Matter -- 5.1 Introduction -- 5.2 Relaxing the Unitarity Bound By Injecting Entropy -- 5.2.1 The Start of the Matter Era -- 5.2.2 The End of the Matter Era -- 5.2.3 Dilution by Entropy Injection -- 5.2.4 Impact on Unitary Bound -- 5.3 The Dark bold upper U bold left parenthesis bold 1 bold right parenthesisU(1) Model as a Case of Study -- 5.3.1 The Lagrangian -- 5.3.2 Dark Photon -- 5.3.3 DM Relic Abundance and Dilution -- 5.3.4 DM Signals -- 5.4 Phenomenology -- 5.4.1 Constraints on the Kinetic Mixing -- 5.4.2 DM Constraints from the Early Universe -- 5.4.3 DM Constraints from the Local Universe -- 5.4.4 On the Dark Photon Emitted During the Formation of Bound States -- 5.5 Summary and Outlook -- 5.A upper U left parenthesis 1 right parenthesis Subscript upper DU(1)D Coupled to Hypercharge upper U left parenthesis 1 right parenthesis Subscript upper YU(1)Y -- 5.A.1 The Lagrangian -- 5.A.2 Gauge Eigenstates Versus Mass Eigenstates -- 5.A.3 Dark Photon Interaction with SM -- 5.B Dark Photon Decay Widths -- 5.C Gamma Ray from DM Annihilation -- References -- 6 First-Order Cosmological Phase Transition -- 6.1 Bubble Nucleation -- 6.1.1 Effective Potential at Finite Temperature -- 6.1.2 Tunneling Rate -- 6.1.3 Thin-Wall and Thick-Wall Limits -- 6.1.4 Temperature at Which the Phase Transition Completes -- 6.2 Bubble Propagation -- 6.2.1 Equation of Motion for the Scalar Field. , 6.2.2 Friction Pressure at Local Thermal Equilibrium -- 6.2.3 Friction Pressure Close to Local Thermal Equilibrium -- 6.2.4 Friction Pressure in the Ballistic Approximation -- 6.2.5 Friction Pressure at NLO -- 6.2.6 Speed of the Wall -- 6.3 GW Generation -- 6.3.1 The GW Spectrum for a Generic Source -- 6.3.2 Contribution from the Scalar Field -- 6.3.3 Contributions from Sound Waves and Turbulence -- 6.3.4 Energy Transfer to Sound-Waves -- 6.4 Supercooling from a Nearly-Conformal Sector -- 6.4.1 Weakly-coupled Scenario: The Coleman-Weinberg Potential -- 6.4.2 Strongly-Coupled Scenario: The Light-Dilaton Potential -- 6.A Sensitivity Curves of GW Detectors -- 6.A.1 The Signal-to-Noise Ratio -- 6.A.2 The Power-Law Integrated Sensitivity Curve -- 6.A.3 Results -- References -- 7 String Fragmentation in Supercooled Confinement and Implications for Dark Matter -- 7.1 Introduction -- 7.2 Synopsis -- 7.3 Supercooling Before Confinement -- 7.3.1 Strongly Coupled CFT -- 7.3.2 Thermal History -- 7.3.3 Dilution of the Degrees of Freedom -- 7.4 Confinement and String Fragmentation -- 7.4.1 Where Does Confinement Happen? -- 7.4.2 Fluxtubes Attach to the Wall Following Supercooling -- 7.4.3 String Energy and Boost Factors -- 7.4.4 Hadrons from String Fragmentation: Multiplicity and Energy -- 7.4.5 Enhancement of Number Density from String Fragmentation -- 7.4.6 Ejected Quarks and Gluons and Their Energy Budget -- 7.5 Bubble Wall Velocities -- 7.5.1 LO Pressure -- 7.5.2 NLO Pressure -- 7.5.3 Ping-Pong Regime -- 7.6 Amount of Supercooling Needed for Our Picture to Be Relevant -- 7.7 Ejected Quarks and Gluons -- 7.7.1 Density of Ejected Techniquanta -- 7.7.2 Scatterings of Ejected Quarks and Gluons Before Reaching Other Bubbles -- 7.7.3 Ejected Techniquanta Enter Other Bubbles (and Their Pressure on Them) -- 7.7.4 Ejected Techniquanta Heat the Diluted SM Bath. , 7.8 Deep Inelastic Scattering in the Early Universe -- 7.8.1 Scatterings Before (P)reheating -- 7.8.2 Scatterings with the (P)reheated Bath -- 7.8.3 Enhancement of Hadron Abundance Via DIS -- 7.8.4 DIS Summary -- 7.9 Supercooled Composite Dark Matter -- 7.9.1 Initial Condition for Thermal Evolution -- 7.9.2 Thermal Contribution -- 7.9.3 Dark Matter Relic Abundance -- 7.10 Discussion and Outlook -- 7.A Wall Profile of the Expanding Bubbles -- 7.A.1 The Light-Dilaton Potential -- 7.A.2 The Wall Profile -- 7.B Example Estimates of the String to DM Branching Ratio -- 7.B.1 Light Meson-Combinatorics -- 7.B.2 Heavy Baryon-Boltzmann Suppression -- References -- 8 Gravitational Waves from Cosmic Strings -- 8.1 Introduction -- 8.2 Recap on Cosmic Strings -- 8.2.1 Microscopic Origin of Cosmic Strings -- 8.2.2 Cosmic-String Network Formation and Evolution -- 8.2.3 Decay Channels of Cosmic Strings -- 8.2.4 Constraints on the String Tension upper G muG µ from GW Emission -- 8.3 Gravitational Waves from Cosmic Strings -- 8.3.1 Beyond the Nambu-Goto Approximation -- 8.3.2 Assumptions on the Loop Distribution -- 8.3.3 The Gravitational-Wave Spectrum -- 8.3.4 The Frequency-Temperature Relation -- 8.3.5 The Astrophysical Foreground -- 8.4 The Velocity-Dependent One-Scale Model -- 8.4.1 The Loop-Production Efficiency -- 8.4.2 The VOS Equations -- 8.4.3 Scaling Regime Solution and Beyond -- 8.5 Standard Cosmology -- 8.5.1 The Cosmic Expansion -- 8.5.2 Gravitational Wave Spectrum -- 8.5.3 Deviation from the Scaling Regime -- 8.5.4 Beyond the Nambu-Goto Approximation -- 8.6 Intermediate Matter Era -- 8.6.1 The Non-standard Scenario -- 8.6.2 Impact on the Spectrum -- 8.6.3 Constraints -- 8.7 Intermediate Inflation -- 8.7.1 The Non-standard Scenario -- 8.7.2 The Stretching Regime and Its Impact on the Spectrum -- 8.7.3 Model-Independent Constraints. , 8.8 Summary and Conclusion -- 8.A Constraints on Cosmic Strings from BBN, Gravitational … -- 8.A.1 GW Constraints from BBN -- 8.A.2 Gravitational Lensing -- 8.A.3 Temperature Anisotropies in the CMB -- 8.A.4 Non-gravitational Radiation -- 8.B Derivation of the GW Spectrum from CS -- 8.B.1 From GW Emission to Detection -- 8.B.2 From Loop Production to GW Emission -- 8.B.3 The Loop Production -- 8.B.4 The Master Equation -- 8.B.5 The GW Spectrum from the Quadrupole Formula -- 8.B.6 Impact of the High-Frequency Proper Modes of the Loop -- 8.C Derivation of the Frequency-Temperature Relation -- 8.C.1 In Standard Cosmology -- 8.C.2 During a Change of Cosmology -- 8.C.3 In the Presence of an Intermediate Inflation Period -- 8.C.4 Cut-Off from Particle Production -- 8.D Derivation of the VOS Equations -- 8.D.1 The Nambu-Goto String in an Expanding Universe -- 8.D.2 The Long-String Network -- 8.D.3 VOS 1: The Correlation Length -- 8.D.4 Thermal Friction -- 8.D.5 VOS 2: The Mean Velocity -- 8.E Extension of the Original VOS Model -- 8.E.1 VOS Model from Nambu-Goto Simulations -- 8.E.2 VOS Model from Abelian-Higgs Simulations -- 8.E.3 VOS Model from Abelian-Higgs Simulations with Particle Production -- 8.F GW Spectrum from Global Strings -- 8.F.1 The Presence of a Massless Mode -- 8.F.2 Evolution of the Global Network -- 8.F.3 The GW Spectrum -- 8.F.4 Global Versus Local Strings -- 8.F.5 As a Probe of Non-standard Cosmology -- References -- 9 Probe Heavy DM with GW from CS -- 9.1 The Imprints of an Early Era of Matter Domination -- 9.1.1 Modified Spectral Index -- 9.1.2 How to Detect a Matter Era with a GW Interferometer -- 9.1.3 Model-Independent Constraints on Particle Physics Parameters -- 9.1.4 Heavy Dark Photons -- 9.2 Supercooled Composite Dark Matter -- 9.3 Summary -- References -- 10 Conclusion -- References.
    Additional Edition: Print version: Gouttenoire, Yann Beyond the Standard Model Cocktail Cham : Springer International Publishing AG,c2023 ISBN 9783031118616
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783031118661?
Did you mean 9783031105616?
Did you mean 9783030115616?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages