Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almafu_9960943213402883
    Umfang: 1 online resource (298 pages)
    ISBN: 9783031124709 , 3-031-12470-7
    Serie: Advances in Material Research and Technology
    Anmerkung: Intro -- Preface -- Contents -- 1 Basic Aspects of Design and Operation of All-Solid-State Batteries -- 1.1 Introduction -- 1.2 Battery Design -- 1.2.1 Electrode Materials -- 1.2.2 Electrolyte Materials -- 1.2.3 Different Battery Designs -- 1.3 Processing Techniques for ASSBs -- 1.3.1 Wet Coating Process -- 1.3.2 Extrusion Process Devoid of Solvent -- 1.3.3 Printing -- 1.3.4 Pressing -- 1.3.5 Thin-Film Deposition -- 1.4 Interfacial Challenges for Full Cell Development -- 1.4.1 Interfaces at Composite Solid Cathodes -- 1.4.2 Interfaces at Li Metal and Electrolyte in Solid-State Batteries -- 1.4.3 Interfaces at Current Collector -- 1.5 Conclusion -- References -- 2 A Glimpse of Battery Parameters and State-of-the-Art Characterization Techniques -- 2.1 Introduction -- 2.2 A Brief on Battery Parameters -- 2.2.1 Performance Parameters -- 2.2.2 Component Parameters -- 2.3 Synchrotron X-ray Techniques -- 2.3.1 Operando X-ray Diffraction (XRD) -- 2.3.2 X-ray Photoelectron Spectroscopy -- 2.3.3 Operando X-ray Absorption Spectroscopy -- 2.4 Neutron Scattering Techniques -- 2.4.1 Neutron Powder Diffraction (NPD) -- 2.4.2 Neutron Depth Profiling (NDP) -- 2.4.3 Quasi-Elastic Neutron Scattering (QENS) and Inelastic Neutron Scattering (INS) -- 2.4.4 Neutron Reflectometry (NR) -- 2.4.5 Small Angle Neutron Scattering (SANS) -- 2.5 Solid-State Nuclear Magnetic Resonance (SS NMR) -- 2.5.1 Magic-Angle Spinning (MAS) NMR -- 2.5.2 Magnetic Resonance Imaging (MRI) NMR -- 2.5.3 Two-Dimensional Exchange Spectroscopy (2D EXSY) NMR -- 2.6 Summary -- References -- 3 Prospective Anodes for Solid-State Lithium-Ion Battery -- 3.1 Introduction -- 3.2 Operating Principles of Li-Ion Batteries -- 3.3 Technological Evolution of Lithium-Ion Batteries -- 3.4 Carbonaceous Materials and Its Composite as Anode for Li-Ion Batteries. , 3.4.1 Carbonaceous Materials and Its Composite as Anode for Solid-State Li-ion Batteries -- 3.5 Lithium Metal Anodes for Solid-State Li-Ion Batteries -- 3.5.1 Solid-State Electrolytes -- 3.5.2 Artificial Coating Layer or Interlayer Modification for Stable Li Anode -- 3.5.3 Composite Electrode Design for Stable Li Anode -- 3.6 Alloying Materials as Anodes for ASSLBs -- 3.7 Transition Metal Oxides as Anode for ASSLBs -- 3.8 Summary and Future Scopes -- References -- 4 Prospective Cathode Materials for All-Solid-State Batteries -- 4.1 Introduction -- 4.2 Basic Principles of Lithium-Ion Batteries (LIBs) -- 4.2.1 Working Principle of LIBs -- 4.2.2 Requirements of Cathode Active Materials -- 4.3 Cathode Material for ASSLIB -- 4.3.1 Lithium Transition Metal Compounds (LxMyXz) -- 4.3.2 Transition Metal Oxide (TMOs) and Dichalcogenides (TMDs) -- 4.4 Future Perspectives on All-Solid-State Battery Cathodes -- 4.5 Conclusion -- References -- 5 Prospective Electrolytes for Solid-State Battery -- 5.1 Introduction -- 5.2 Different Categories of Solid-State Electrolytes -- 5.2.1 γ-Li3PO4 Oxysalts -- 5.2.2 NASICON Electrolytes -- 5.2.3 Garnet Solid Electrolytes -- 5.2.4 Perovskite Electrolytes -- 5.2.5 Sulfide Electrolyte -- 5.2.6 Other Important Electrolytes -- 5.3 Electrode-Electrolyte Interfaces in Solid-State Batteries -- 5.4 Conclusions and Future Perspectives -- References -- 6 Novel Design Aspects of All-Solid-State Batteries -- 6.1 Introduction -- 6.2 Challenges in Design Aspects -- 6.2.1 Stable Electrode-Electrolyte Interfaces -- 6.2.2 Materials Compatibility -- 6.2.3 Resistance at the Interface and Other Factors -- 6.3 Conventional Design -- 6.3.1 By Powder Pressing -- 6.3.2 Coin Cell and Prototype Assemblies of All Solid-State Batteries -- 6.4 Limitations of Conventional Design Strategies for ASSBs -- 6.5 Novel Design Aspects in ASSBs. , 6.5.1 Printing Technology -- 6.5.2 Stretchable Design -- 6.5.3 3D-Integrated Design -- 6.5.4 Micro-Battery Design -- 6.5.5 Thin-Film Design -- 6.5.6 Hybrid Design -- 6.5.7 Atomic Layer Deposition: Solid-State Full Cell Battery Design -- 6.6 Other Different Design Strategies -- 6.7 Conclusion -- References -- 7 Interfaces in Solid-State Batteries: Challenges and Design Strategies -- 7.1 Introduction -- 7.2 Solid Electrolyte-Safe Battery Technology -- 7.3 Interface in All-Solid-State Batteries -- 7.4 Two Interfaces: Cathode-Electrolyte and Anode-Electrolyte Interfaces -- 7.4.1 Cathode-Electrolyte Interfaces -- 7.4.2 Anode-Electrolyte Interface -- 7.5 Major Issues with Solid-Solid Interfaces -- 7.6 Ionic and Electronic Movements -- 7.7 Interface Interaction with Various Solid Electrolytes -- 7.7.1 The Interface with Sulfide Electrolytes -- 7.7.2 The Interface with Oxide Electrolytes -- 7.7.3 The Interface with Polymer Electrolytes -- 7.7.4 Solid-State Electrolyte/Li Interphase -- 7.8 Strategies to Enhance the Contact of Interfaces -- 7.8.1 Cathode-Side Interfaces -- 7.8.2 Anode-Side Interfaces -- 7.9 Novel Design Aspects of Interfaces -- 7.9.1 Cathode Surface Coating -- 7.9.2 Electrode-Solid Electrolyte Annealing -- 7.9.3 Composite and Wetting Agent on the Interface -- 7.9.4 Cold Pressing and Buffer Layer -- 7.9.5 Conclusions and Future Perspectives -- References -- 8 Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries -- 8.1 Introduction -- 8.2 State of the Art Interface Characterization Techniques -- 8.2.1 Electron Microscopic Techniques -- 8.2.2 X-ray Based Techniques for the Interface Analysis -- 8.2.3 Optical Spectroscopic Techniques for the Interface Analysis -- 8.2.4 Magnetic Techniques for the Interface Analysis. , 8.2.5 Electrochemical Impedance Spectroscopy (EIS) as an Interface Analysis Tool -- 8.3 Other Promising Analysis Techniques to Unveil the Features of the All-Solid-State Interface -- 8.3.1 Neutron Depth Profiling -- 8.3.2 Secondary Ion Mass Spectrometry -- 8.3.3 Scanning Probe Microscopy Technique -- 8.4 Conclusion and Future Research Perspectives -- References -- 9 Recycling of All-Solid-State Lithium-Ion Batteries -- 9.1 Introduction -- 9.2 Failure Mechanism of LIBs and ASSLIBs -- 9.2.1 Failure of SSE/Cathode Interface -- 9.2.2 Failure of SSE/Anode Interface -- 9.3 General Aspects of Battery Recycling -- 9.4 Recycling of All-Solid-State Batteries -- 9.5 Construction of ASSLIBs-An Overview -- 9.5.1 Cell Assembly -- 9.6 Methods of Recycling of All-Solid-State Batteries -- 9.6.1 Mechanical Separation -- 9.6.2 Pyrometallurgy -- 9.6.3 Hydrometallurgy -- 9.6.4 Direct Recycling -- 9.6.5 Hydrothermal Regeneration -- 9.6.6 Dissolution/Precipitation -- 9.7 State-of-the-Art Research in ASSLIB Recycling -- 9.8 Outlook for ASSLIB Recycling -- 9.9 Reuse and Re-purposing of Recycled Materials -- 9.10 Summary and Conclusion -- References -- 10 Future Challenges to Address the Market Demands of All-Solid-State Batteries -- 10.1 Introduction -- 10.1.1 Market Demands to Be Fulfilled with ASSBs -- 10.2 Future Challenges with ASSBs -- 10.2.1 Challenges with the Existing Electrolytes -- 10.2.2 Challenges in Attaining High Energy Density -- 10.2.3 Challenges with the Effective Tools for Characterization -- 10.2.4 Challenges in the Design Aspects -- 10.2.5 Challenges with the Stability of the Batteries -- 10.2.6 Difficulties with Mass Production, Manufacturing Cost in High Energy/Power ASSBs -- 10.3 Concluding Remarks -- References.
    Weitere Ausg.: Print version: Palaniyandy, Nithyadharseni Solid State Batteries Cham : Springer International Publishing AG,c2022 ISBN 9783031124693
    Sprache: Englisch
    Schlagwort(e): Aufsatzsammlung
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949387913202882
    Umfang: VIII, 295 p. 105 illus., 102 illus. in color. , online resource.
    Ausgabe: 1st ed. 2022.
    ISBN: 9783031124709
    Serie: Advances in Material Research and Technology,
    Inhalt: This book offers a comprehensive analysis of novel design strategies in higher energy solid-state lithium batteries. It describes synthesis and experimental techniques to characterize the physical, chemical and electrochemical properties of the electrode and electrolytes. The book reports on electrochemical measurements of conductivity and related parameters in solid electrolytes and its interfaces. It also presents various technologies that have been used for the fabrication of all-solid-state lithium-ion batteries such as thin-film, 3D printing (additive manufacturing) and atomic layer deposition. A large part of the text focus on the description on the complete functioning and challenges with the electrochemistry of the electrodes and solid electrolyte interfaces. The book also supplies valuable insight into potential growth opportunities in this exciting market and cost-effective design tactics in solid-state assemblies. .
    Anmerkung: Basic aspects on design and operation of All-Solid-State Batteries -- A glimpse of battery parameters and state-of-the-art characterization techniques -- Prospective anodes for solid-state lithium-ion battery -- Prospective Cathode Materials for All-Solid-State Batteries -- Prospective electrolytes for solid-state battery -- NOVEL DESIGN ASPECTS OF ALL-SOLID-STATE BATTERIES -- INTERFACES IN SOLID-STATE BATTERIES: CHALLENGES AND DESIGN STRATEGIES -- ADVANCED CHARACTERIZATION TECHNIQUES TO UNVEIL THE DYNAMICS OF CHALLENGING NANO-SCALE INTERFACES IN ALL-SOLID-STATE BATTERIES -- RECYCLING OF ALL SOLID-STATE LITHIUM ION BATTERIES -- FUTURE CHALLENGES TO ADDRESS THE MARKET DEMANDS OF ALL-SOLID-STATE BATTERIES.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031124693
    Weitere Ausg.: Printed edition: ISBN 9783031124716
    Weitere Ausg.: Printed edition: ISBN 9783031124723
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edoccha_9960943213402883
    Umfang: 1 online resource (298 pages)
    ISBN: 3-031-12470-7
    Serie: Advances in Material Research and Technology
    Anmerkung: Intro -- Preface -- Contents -- 1 Basic Aspects of Design and Operation of All-Solid-State Batteries -- 1.1 Introduction -- 1.2 Battery Design -- 1.2.1 Electrode Materials -- 1.2.2 Electrolyte Materials -- 1.2.3 Different Battery Designs -- 1.3 Processing Techniques for ASSBs -- 1.3.1 Wet Coating Process -- 1.3.2 Extrusion Process Devoid of Solvent -- 1.3.3 Printing -- 1.3.4 Pressing -- 1.3.5 Thin-Film Deposition -- 1.4 Interfacial Challenges for Full Cell Development -- 1.4.1 Interfaces at Composite Solid Cathodes -- 1.4.2 Interfaces at Li Metal and Electrolyte in Solid-State Batteries -- 1.4.3 Interfaces at Current Collector -- 1.5 Conclusion -- References -- 2 A Glimpse of Battery Parameters and State-of-the-Art Characterization Techniques -- 2.1 Introduction -- 2.2 A Brief on Battery Parameters -- 2.2.1 Performance Parameters -- 2.2.2 Component Parameters -- 2.3 Synchrotron X-ray Techniques -- 2.3.1 Operando X-ray Diffraction (XRD) -- 2.3.2 X-ray Photoelectron Spectroscopy -- 2.3.3 Operando X-ray Absorption Spectroscopy -- 2.4 Neutron Scattering Techniques -- 2.4.1 Neutron Powder Diffraction (NPD) -- 2.4.2 Neutron Depth Profiling (NDP) -- 2.4.3 Quasi-Elastic Neutron Scattering (QENS) and Inelastic Neutron Scattering (INS) -- 2.4.4 Neutron Reflectometry (NR) -- 2.4.5 Small Angle Neutron Scattering (SANS) -- 2.5 Solid-State Nuclear Magnetic Resonance (SS NMR) -- 2.5.1 Magic-Angle Spinning (MAS) NMR -- 2.5.2 Magnetic Resonance Imaging (MRI) NMR -- 2.5.3 Two-Dimensional Exchange Spectroscopy (2D EXSY) NMR -- 2.6 Summary -- References -- 3 Prospective Anodes for Solid-State Lithium-Ion Battery -- 3.1 Introduction -- 3.2 Operating Principles of Li-Ion Batteries -- 3.3 Technological Evolution of Lithium-Ion Batteries -- 3.4 Carbonaceous Materials and Its Composite as Anode for Li-Ion Batteries. , 3.4.1 Carbonaceous Materials and Its Composite as Anode for Solid-State Li-ion Batteries -- 3.5 Lithium Metal Anodes for Solid-State Li-Ion Batteries -- 3.5.1 Solid-State Electrolytes -- 3.5.2 Artificial Coating Layer or Interlayer Modification for Stable Li Anode -- 3.5.3 Composite Electrode Design for Stable Li Anode -- 3.6 Alloying Materials as Anodes for ASSLBs -- 3.7 Transition Metal Oxides as Anode for ASSLBs -- 3.8 Summary and Future Scopes -- References -- 4 Prospective Cathode Materials for All-Solid-State Batteries -- 4.1 Introduction -- 4.2 Basic Principles of Lithium-Ion Batteries (LIBs) -- 4.2.1 Working Principle of LIBs -- 4.2.2 Requirements of Cathode Active Materials -- 4.3 Cathode Material for ASSLIB -- 4.3.1 Lithium Transition Metal Compounds (LxMyXz) -- 4.3.2 Transition Metal Oxide (TMOs) and Dichalcogenides (TMDs) -- 4.4 Future Perspectives on All-Solid-State Battery Cathodes -- 4.5 Conclusion -- References -- 5 Prospective Electrolytes for Solid-State Battery -- 5.1 Introduction -- 5.2 Different Categories of Solid-State Electrolytes -- 5.2.1 γ-Li3PO4 Oxysalts -- 5.2.2 NASICON Electrolytes -- 5.2.3 Garnet Solid Electrolytes -- 5.2.4 Perovskite Electrolytes -- 5.2.5 Sulfide Electrolyte -- 5.2.6 Other Important Electrolytes -- 5.3 Electrode-Electrolyte Interfaces in Solid-State Batteries -- 5.4 Conclusions and Future Perspectives -- References -- 6 Novel Design Aspects of All-Solid-State Batteries -- 6.1 Introduction -- 6.2 Challenges in Design Aspects -- 6.2.1 Stable Electrode-Electrolyte Interfaces -- 6.2.2 Materials Compatibility -- 6.2.3 Resistance at the Interface and Other Factors -- 6.3 Conventional Design -- 6.3.1 By Powder Pressing -- 6.3.2 Coin Cell and Prototype Assemblies of All Solid-State Batteries -- 6.4 Limitations of Conventional Design Strategies for ASSBs -- 6.5 Novel Design Aspects in ASSBs. , 6.5.1 Printing Technology -- 6.5.2 Stretchable Design -- 6.5.3 3D-Integrated Design -- 6.5.4 Micro-Battery Design -- 6.5.5 Thin-Film Design -- 6.5.6 Hybrid Design -- 6.5.7 Atomic Layer Deposition: Solid-State Full Cell Battery Design -- 6.6 Other Different Design Strategies -- 6.7 Conclusion -- References -- 7 Interfaces in Solid-State Batteries: Challenges and Design Strategies -- 7.1 Introduction -- 7.2 Solid Electrolyte-Safe Battery Technology -- 7.3 Interface in All-Solid-State Batteries -- 7.4 Two Interfaces: Cathode-Electrolyte and Anode-Electrolyte Interfaces -- 7.4.1 Cathode-Electrolyte Interfaces -- 7.4.2 Anode-Electrolyte Interface -- 7.5 Major Issues with Solid-Solid Interfaces -- 7.6 Ionic and Electronic Movements -- 7.7 Interface Interaction with Various Solid Electrolytes -- 7.7.1 The Interface with Sulfide Electrolytes -- 7.7.2 The Interface with Oxide Electrolytes -- 7.7.3 The Interface with Polymer Electrolytes -- 7.7.4 Solid-State Electrolyte/Li Interphase -- 7.8 Strategies to Enhance the Contact of Interfaces -- 7.8.1 Cathode-Side Interfaces -- 7.8.2 Anode-Side Interfaces -- 7.9 Novel Design Aspects of Interfaces -- 7.9.1 Cathode Surface Coating -- 7.9.2 Electrode-Solid Electrolyte Annealing -- 7.9.3 Composite and Wetting Agent on the Interface -- 7.9.4 Cold Pressing and Buffer Layer -- 7.9.5 Conclusions and Future Perspectives -- References -- 8 Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries -- 8.1 Introduction -- 8.2 State of the Art Interface Characterization Techniques -- 8.2.1 Electron Microscopic Techniques -- 8.2.2 X-ray Based Techniques for the Interface Analysis -- 8.2.3 Optical Spectroscopic Techniques for the Interface Analysis -- 8.2.4 Magnetic Techniques for the Interface Analysis. , 8.2.5 Electrochemical Impedance Spectroscopy (EIS) as an Interface Analysis Tool -- 8.3 Other Promising Analysis Techniques to Unveil the Features of the All-Solid-State Interface -- 8.3.1 Neutron Depth Profiling -- 8.3.2 Secondary Ion Mass Spectrometry -- 8.3.3 Scanning Probe Microscopy Technique -- 8.4 Conclusion and Future Research Perspectives -- References -- 9 Recycling of All-Solid-State Lithium-Ion Batteries -- 9.1 Introduction -- 9.2 Failure Mechanism of LIBs and ASSLIBs -- 9.2.1 Failure of SSE/Cathode Interface -- 9.2.2 Failure of SSE/Anode Interface -- 9.3 General Aspects of Battery Recycling -- 9.4 Recycling of All-Solid-State Batteries -- 9.5 Construction of ASSLIBs-An Overview -- 9.5.1 Cell Assembly -- 9.6 Methods of Recycling of All-Solid-State Batteries -- 9.6.1 Mechanical Separation -- 9.6.2 Pyrometallurgy -- 9.6.3 Hydrometallurgy -- 9.6.4 Direct Recycling -- 9.6.5 Hydrothermal Regeneration -- 9.6.6 Dissolution/Precipitation -- 9.7 State-of-the-Art Research in ASSLIB Recycling -- 9.8 Outlook for ASSLIB Recycling -- 9.9 Reuse and Re-purposing of Recycled Materials -- 9.10 Summary and Conclusion -- References -- 10 Future Challenges to Address the Market Demands of All-Solid-State Batteries -- 10.1 Introduction -- 10.1.1 Market Demands to Be Fulfilled with ASSBs -- 10.2 Future Challenges with ASSBs -- 10.2.1 Challenges with the Existing Electrolytes -- 10.2.2 Challenges in Attaining High Energy Density -- 10.2.3 Challenges with the Effective Tools for Characterization -- 10.2.4 Challenges in the Design Aspects -- 10.2.5 Challenges with the Stability of the Batteries -- 10.2.6 Difficulties with Mass Production, Manufacturing Cost in High Energy/Power ASSBs -- 10.3 Concluding Remarks -- References.
    Weitere Ausg.: Print version: Palaniyandy, Nithyadharseni Solid State Batteries Cham : Springer International Publishing AG,c2022 ISBN 9783031124693
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031120749?
Meinten Sie 9783031024719?
Meinten Sie 9783031114809?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz