Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing :
    UID:
    almahu_9949450757402882
    Umfang: XII, 97 p. 29 illus., 28 illus. in color. , online resource.
    Ausgabe: 1st ed. 2022.
    ISBN: 9783031148088
    Serie: Springer Theses, Recognizing Outstanding Ph.D. Research,
    Inhalt: The thesis contains several pioneering results at the intersection of state-of-the-art materials characterization techniques and machine learning. The use of machine learning empowers the information extraction capability of neutron and photon spectroscopies. In particular, new knowledge and new physics insights to aid spectroscopic analysis may hold great promise for next-generation quantum technology. As a prominent example, the so-called proximity effect at topological material interfaces promises to enable spintronics without energy dissipation and quantum computing with fault tolerance, yet the characteristic spectral features to identify the proximity effect have long been elusive. The work presented within permits a fine resolution of its spectroscopic features and a determination of the proximity effect which could aid further experiments with improved interpretability. A few novel machine learning architectures are proposed in this thesis work which leverage the case when the data is scarce and utilize the internal symmetry of the system to improve the training quality. The work sheds light on future pathways to apply machine learning to augment experiments.
    Anmerkung: Chapter1: Introduction -- Chapter2: Background -- Chapter3: Data-efficient learning of materials' vibrational properties -- Chapter4: Machine learning-assisted parameter retrieval from polarized neutron reflectometry measurements -- Chapter5: Machine learning spectral indicators of topology -- Chapter6: Conclusion and outlook.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031148071
    Weitere Ausg.: Printed edition: ISBN 9783031148095
    Weitere Ausg.: Printed edition: ISBN 9783031148101
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031118401?
Meinten Sie 9783031048111?
Meinten Sie 9783031128011?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz