Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Online-Ressource
    Online-Ressource
    Cham, Switzerland :Springer,
    UID:
    edoccha_9961449889202883
    Umfang: 1 online resource (287 pages)
    Ausgabe: First edition.
    ISBN: 3-031-50650-2
    Serie: Synthesis Lectures on Engineering, Science, and Technology Series
    Anmerkung: Intro -- Preface -- Contents -- List of Figures -- List of Tables -- 1 Basic Concepts and Notations -- [DELETE] -- 1.1 Discrete Functions -- 1.2 Functional Expressions -- 1.3 Reed-Muller-Fourier Expressions -- 1.3.1 RMF-Expressions for Ternary Functions -- 1.3.2 RMF-Expressions for Quaternary Functions -- 1.4 Fourier Transforms on Finite Abelian Groups -- 1.5 Fast Fourier Transform -- 1.6 Binary Bent Functions -- 1.7 Ternary Bent Functions -- 1.8 Quaternary Bent Functions -- 1.9 Distribution of Function Values and Bentness -- 1.10 Spectral Invariant Operations -- 2 Gibbs Derivatives on Finite Abelian Groups -- [DELETE] -- 2.1 Gibbs Derivative for Binary Functions -- 2.2 Computing the Dyadic Gibbs Derivative -- 2.3 Gibbs Derivative for Ternary Functions -- 2.4 Galois Field Gibbs Derivative for Ternary Functions -- 2.5 Gibbs Derivatives for Quaternary Functions -- 2.6 Gibbs RMF-Derivative for Quaternary Functions -- 3 Gibbs Characterization of Binary Bent Functions -- [DELETE] -- 3.1 Properties of the Gibbs Dyadic Derivative of Bent Functions -- 3.2 Checking if a Binary Function is Bent by Using the Gibbs Dyadic Derivative -- 3.3 Gibbs Permutation Matrices -- 3.4 Structure of Gibbs Permutation Matrices -- 3.5 Binary Bent Functions in Four Variables -- 4 Gibbs Characterization of Ternary Bent Functions -- [DELETE] -- 4.1 Ternary Bent Functions for n equals 1n=1 -- 4.2 Spectral Invariant Operations and Ternary Bent Functions -- 4.3 Gibbs Characterization of Ternary Bent Functions -- 4.3.1 Ternary Bent Functions for n equals 1n=1 and Gibbs Derivatives -- 4.3.2 Ternary Bent Functions for n equals 2n=2 Characterized by the VC-Gibbs Derivative -- 4.4 Gibbs Permutation Matrices for Ternary Functions -- 4.5 Extensions to Any Number of Variables -- 4.6 Construction Algorithm -- 4.7 The Galois Field Gibbs Derivatives and Ternary Bent Functions. , 4.8 Gibbs Characterization of Ternary Functions and Distribution of Function Values -- 5 Gibbs Characterization of a Class of Quaternary Bent Functions -- [DELETE] -- 5.1 Quaternary Bent Functions for n equals 1n=1 -- 5.1.1 Classes of Quaternary Bent Functions for n equals 1n=1 in Terms of the RMF-Gibbs Derivative -- 5.1.2 Classes of Quaternary Bent Functions for n equals 1n=1 in Terms of the VC-Gibbs Derivative -- 5.2 Quaternary Bent Functions for n equals 2n=2 -- 5.3 Experiments for Quaternary Bent Functions in n equals 2n=2 Variables -- 5.4 Binary and Quaternary Bent Functions -- 5.5 Generalized Four-Valued Bent Functions -- 5.6 Construction of Generalized Boolean Bent Functions -- 5.6.1 Straightforward Algorithm -- 5.6.2 Construction by Permutation Matrices -- 5.6.3 Construction of Bent Functions by Combination of Permutation Matrices -- 6 Matrix-Valued Binary Bent Functions -- [DELETE] -- 6.1 Matrix-Valued Functions -- 6.1.1 Classification Method -- 6.2 Classes of Binary Bent Functions for n equals 4n=4 -- 6.3 Classes of Binary Bent Functions for n equals 6n=6 -- 6.3.1 left parenthesis 2 times 2 right parenthesis(2times2)-spectra for Binary Bent Functions for n equals 6n=6 -- 6.3.2 left parenthesis 4 times 4 right parenthesis(4times4)-spectra for Binary Bent Functions for n equals 6n=6 -- 6.4 Classes for Binary Bent Functions for n equals 8n=8 -- 6.4.1 left parenthesis 2 times 2 right parenthesis(2times2)-spectra for Functions in n equals 8n=8 Variables -- 6.4.2 left parenthesis 4 times 4 right parenthesis(4times4)-spectra for Functions in n equals 8n=8 Variables -- 7 Matrix-Valued Ternary Bent Functions -- [DELETE] -- 7.1 Matrix-Valued Equivalents of Bent Functions -- 7.1.1 Similarity of Ternary Bent Functions -- 7.1.2 Matrix-Valued Vilenkin-Chrestenson Coefficients of Linear Ternary Functions. , 7.2 Classification Approach for Ternary Bent Functions -- 7.3 Classes of Ternary Bent Functions for n equals 3n=3 and n equals 4n=4 -- 7.3.1 left parenthesis 3 times 3 right parenthesis(3times3)-spectra for Ternary Bent Functions of the Degree 33 for n equals 3n=3 -- 7.3.2 left parenthesis 3 times 3 right parenthesis(3times3)-spectra for Ternary Bent Functions of the Degree 44 for n equals 3n=3 -- 7.3.3 left parenthesis 3 times 3 right parenthesis(3times3)-spectra for Ternary Functions for n equals 4n=4 -- 7.3.4 Ternary Linear Functions and Ternary Bent Functions -- 7.4 Construction of Ternary Bent Functions from Ternary Linear Functions -- 8 Construction of Bent Functions by FFT-like Permutation Matrices -- [DELETE] -- 8.1 FFT-like Permutation Matrices for Binary Bent Functions -- 8.2 Permutation Matrices for Disjoint Spectral Translation -- 8.3 Construction of Binary Bent Functions by FFT-like Permutation Matrices -- 8.4 Gibbs Matrices and FFT-like Permutation Matrices for Binary Functions -- 8.5 FFT-like Permutation Matrices for Ternary Bent Functions -- 8.5.1 Kronecker Product Representable Matrices -- 8.6 Computation with Permutation Matrices -- 8.7 Extensions to Functions in Arbitrary Number of Variables -- 8.7.1 Permutation Matrices for Disjoint Spectral Translation -- 8.7.2 Permutation Matrices for Permutation of Variables -- 8.7.3 Block Diagonal Permutation Matrices -- 8.7.4 Block Diagonal Permutation Matrices for n equals 4n=4 -- 8.7.5 Shift-Based Permutation Matrices -- 8.8 Construction of Ternary Bent Functions by FFT-like Permutation Matrices -- 8.9 Generalizations -- 8.9.1 Permutation of Subvectors -- 8.10 Gibbs and FFT-like Permutation Matrices for Ternary Functions -- 9 Construction of Ternary Bent Functions From Matrix Representations -- [DELETE] -- 9.1 Matrix Representations of Ternary Bent Functions. , 9.2 Construction of Ternary Bent Functions from Matrix ….
    Weitere Ausg.: ISBN 3-031-50649-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer Nature Switzerland :
    UID:
    almafu_9961449889202883
    Umfang: 1 online resource (287 pages)
    Ausgabe: 1st ed. 2024.
    ISBN: 3-031-50650-2
    Serie: Synthesis Lectures on Engineering, Science, and Technology,
    Inhalt: This book discusses in a uniform way binary, ternary, and quaternary bent functions, while most of the existing books on bent functions refer to just binary bent functions. The authors describe the differences between binary and multiple-valued cases and the construction methods for bent functions are focused on the application of two types of permutation matrices. These matrices are derived from a class of differential operators on finite groups and Fast Fourier transform algorithms, respectively. The approach presented is based on the observation that given certain bent functions, many other bent functions can be constructed by manipulating them. Permutations are possible manipulations that are easy to implement. These permutations perform spectral invariant operations which ensure that they preserve bentness.
    Anmerkung: Basic Concepts and Notations -- Gibbs Derivatives on Finite Abelian Groups -- Gibbs Characterization of Binary Bent Functions -- Gibbs Characterisation of Ternary Bent Functions -- Gibbs Characterization of a Class of Quaternary Bent Functions -- Matrix-valued Binary Bent Functions -- Matrix-valued Ternary Bent Functions -- Construction of Bent Functions by FFT-like Permutation Matrices -- Construction of Ternary Bent Functions Trough Matrix Representations.
    Weitere Ausg.: ISBN 3-031-50649-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almahu_9949744359502882
    Umfang: XIX, 272 p. 27 illus., 22 illus. in color. , online resource.
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031506505
    Serie: Synthesis Lectures on Engineering, Science, and Technology,
    Inhalt: This book discusses in a uniform way binary, ternary, and quaternary bent functions, while most of the existing books on bent functions refer to just binary bent functions. The authors describe the differences between binary and multiple-valued cases and the construction methods for bent functions are focused on the application of two types of permutation matrices. These matrices are derived from a class of differential operators on finite groups and Fast Fourier transform algorithms, respectively. The approach presented is based on the observation that given certain bent functions, many other bent functions can be constructed by manipulating them. Permutations are possible manipulations that are easy to implement. These permutations perform spectral invariant operations which ensure that they preserve bentness.
    Anmerkung: Basic Concepts and Notations -- Gibbs Derivatives on Finite Abelian Groups -- Gibbs Characterization of Binary Bent Functions -- Gibbs Characterisation of Ternary Bent Functions -- Gibbs Characterization of a Class of Quaternary Bent Functions -- Matrix-valued Binary Bent Functions -- Matrix-valued Ternary Bent Functions -- Construction of Bent Functions by FFT-like Permutation Matrices -- Construction of Ternary Bent Functions Trough Matrix Representations.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031506499
    Weitere Ausg.: Printed edition: ISBN 9783031506512
    Weitere Ausg.: Printed edition: ISBN 9783031506529
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031056505?
Meinten Sie 9783031506055?
Meinten Sie 9783031506550?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz