Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer Nature Switzerland :
    UID:
    almafu_9961447750102883
    Umfang: 1 online resource (XVII, 285 p. 1 illus.)
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031508981 , 303150898X
    Serie: Advances in Mathematical Fluid Mechanics,
    Inhalt: This book provides a successful solution to one of the central problems of mathematical fluid mechanics: the Leray’s problem on existence of a solution to the boundary value problem for the stationary Navier—Stokes system in bounded domains under sole condition of zero total flux. This marks the culmination of the authors' work over the past few years on this under-explored topic within the study of the Navier—Stokes equations. This book will be the first major work on the Navier—Stokes equations to explore Leray’s problem in detail. The results are presented with detailed proofs, as are the history of the problem and the previous approaches to finding a solution to it. In addition, for the reader’s convenience and for the self-sufficiency of the text, the foundations of the mathematical theory for incompressible fluid flows described by the steady state Stokes and Navier—Stokes systems are presented. For researchers in this active area, this book will be a valuable resource.
    Anmerkung: 1 Preliminaries -- 2 Stokes problem -- 3 Stationary Navier–Stokes problem in bounded domains -- 4 The case of symmetric two-dimensional domains. General outflow condition -- 5 The case of general two-dimensional domains and general outflow condition -- 6 The case of axially symmetric three-dimensional domains.
    Weitere Ausg.: ISBN 9783031508974
    Weitere Ausg.: ISBN 3031508971
    Sprache: Englisch
    Schlagwort(e): Llibres electrònics
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    edoccha_9961447750102883
    Umfang: 1 online resource (XVII, 285 p. 1 illus.)
    Ausgabe: First edition.
    ISBN: 3-031-50898-X
    Serie: Advances in Mathematical Fluid Mechanics Series
    Inhalt: This book provides a successful solution to one of the central problems of mathematical fluid mechanics: the Leray’s problem on existence of a solution to the boundary value problem for the stationary Navier—Stokes system in bounded domains under sole condition of zero total flux. This marks the culmination of the authors' work over the past few years on this under-explored topic within the study of the Navier—Stokes equations. This book will be the first major work on the Navier—Stokes equations to explore Leray’s problem in detail. The results are presented with detailed proofs, as are the history of the problem and the previous approaches to finding a solution to it. In addition, for the reader’s convenience and for the self-sufficiency of the text, the foundations of the mathematical theory for incompressible fluid flows described by the steady state Stokes and Navier—Stokes systems are presented. For researchers in this active area, this book will be a valuable resource.
    Anmerkung: 1 Preliminaries -- 2 Stokes problem -- 3 Stationary Navier–Stokes problem in bounded domains -- 4 The case of symmetric two-dimensional domains. General outflow condition -- 5 The case of general two-dimensional domains and general outflow condition -- 6 The case of axially symmetric three-dimensional domains.
    Weitere Ausg.: ISBN 3-031-50897-1
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031058981?
Meinten Sie 9783031089381?
Meinten Sie 9783031102981?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz