Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham : Springer Nature Switzerland | Cham : Birkhäuser
    UID:
    b3kat_BV049725126
    Umfang: 1 Online-Ressource (XXVIII, 428 p. 20 illus., 9 illus. in color)
    Ausgabe: 1st ed. 2024
    ISBN: 9783031518812
    Serie: Monographs in Mathematics 110
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51880-5
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51882-9
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-51883-6
    Sprache: Englisch
    Schlagwort(e): Geometrische Maßtheorie ; Variationsproblem
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer Nature Switzerland :
    Dazugehörige Titel
    UID:
    almahu_9949744366402882
    Umfang: XXVIII, 428 p. 20 illus., 9 illus. in color. , online resource.
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031518812
    Serie: Monographs in Mathematics, 110
    Inhalt: This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient. The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler-Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge-Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems. The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.
    Anmerkung: Least Gradient Problem and Minimal Surfaces -- Existence and Characterization of Weak Solutions -- Anisotropic Least Gradient Problem -- Duality Approach -- Existence of Solutions in the Trace Sense -- Uniqueness and Structure of Solutions -- Regularity of Solutions.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031518805
    Weitere Ausg.: Printed edition: ISBN 9783031518829
    Weitere Ausg.: Printed edition: ISBN 9783031518836
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    Cham, Switzerland : Birkhäuser
    UID:
    b3kat_BV049868692
    Umfang: xxviii, 428 Seiten , Diagramme
    ISBN: 9783031518805
    Serie: Monographs in mathematics Volume 110
    Anmerkung: Includes bibliographical references and index
    Sprache: Englisch
    Schlagwort(e): Geometrische Maßtheorie ; Variationsproblem
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cham :Springer Nature Switzerland :
    UID:
    almafu_9961535670902883
    Umfang: 1 online resource (442 pages)
    Ausgabe: 1st ed. 2024.
    ISBN: 3-031-51881-0
    Serie: Monographs in Mathematics, 110
    Inhalt: This book is devoted to the least gradient problem and its variants. The least gradient problem concerns minimization of the total variation of a function with prescribed values on the boundary of a Lipschitz domain. It is the model problem for studying minimization problems involving functionals with linear growth. Functions which solve the least gradient problem for their own boundary data, which arise naturally in the study of minimal surfaces, are called functions of least gradient. The main part of the book is dedicated to presenting the recent advances in this theory. Among others are presented an Euler–Lagrange characterization of least gradient functions, an anisotropic counterpart of the least gradient problem motivated by an inverse problem in medical imaging, and state-of-the-art results concerning existence, regularity, and structure of solutions. Moreover, the authors present a surprising connection between the least gradient problem and the Monge–Kantorovich optimal transport problem and some of its consequences, and discuss formulations of the least gradient problem in the nonlocal and metric settings. Each chapter is followed by a discussion section concerning other research directions, generalizations of presented results, and presentation of some open problems. The book is intended as an introduction to the theory of least gradient functions and a reference tool for a general audience in analysis and PDEs. The readers are assumed to have a basic understanding of functional analysis and partial differential equations. Apart from this, the text is self-contained, and the book ends with five appendices on functions of bounded variation, geometric measure theory, convex analysis, optimal transport, and analysis in metric spaces.
    Anmerkung: Least Gradient Problem and Minimal Surfaces -- Existence and Characterization of Weak Solutions -- Anisotropic Least Gradient Problem -- Duality Approach -- Existence of Solutions in the Trace Sense -- Uniqueness and Structure of Solutions -- Regularity of Solutions.
    Weitere Ausg.: ISBN 3-031-51880-2
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783031518850?
Meinten Sie 9783031118845?
Meinten Sie 9783031158865?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz