Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949772760402882
    Umfang: VI, 457 p. 50 illus., 40 illus. in color. , online resource.
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031523199
    Serie: Environmental Science and Engineering,
    Inhalt: This book presents technoeconomic challenges, recent trends, and developments toward sustainable algal biofuels and biorefinery. The exponential increase in population and thus the demand for energy, the ever-rising threats to climate change with conventional fossil fuels consumption, fluctuations in fossil fuels price and geopolitical instability have made each and every country of the world to think over its energy independence and security by increasing its own domestic energy production and reducing dependence on scarce fossil fuels. The global need to shift towards a sustainable source of energy has led to the discovery of third and fourth generation biofuels, in which microalgae and their genetically modified strains have been exploited. However, these simple photosynthetic organisms are difficult to select and cultivate for the production of biodiesel. Genetic engineering has opened provisions for the introduction of desired traits to such useful strains. There are also scopes for designing of novel photobioreactors (PBRs) having strain-specific physicochemical parameters, adequate CO2 and nutrient supply, and so on. The role of microalgae in CO2 sequestration from the environment is well known fact. Wastewater treatment plants can be used a raceway pond for the microalgal biomass production, and thus, obtained biomass can be used for biofuels and biochemical production. Mathematical modelling can be used to understand the complex phenomena inside the photobioreactor, which can be a great help to overcome the limitations related to design and scale up of PBRs. Flow hydrodynamics in PBRs has significant effect on the microalgae growth. Computational fluid dynamics (CFD) can be used to study operating and geometry factors in PBRs that influence the flow dynamics, such as the inlet gas flow rate, mixing, mass transfer, reactor geometry. The use of artificial intelligence (AI) particularly artificial neural network model (ANN model), statistical and evolutionary learning-based techniques are some innovative approaches in manipulating and optimizing productivity and costs in algal biofuel production. This book is aimed to bring several aspects of algal biorefinery and microalgal biofuel production, challenges, and future perspective of microalgal biofuel production at a single place.
    Anmerkung: Development of a smart microalgae strain: Selection and successful outdoor large-scale cultivation of robust microalgae strain having high growth rate, high biomass productivity, high lipid content and immunity towards invasion of other microorganisms -- High throughput screening of high lipid yielding strains -- Omics approach for enhanced microalgae biomass production with enhanced concentration of desired biomolecules -- Low-cost cultivation methods -- Development of cost effective, energy efficient and easy to operate biomass harvesting methods and dewatering technologies -- Economic, environment friendly and low-cost lipid extraction methods -- Lipid specific extraction method to minimize the co-extraction of non-lipid fractions -- Lipid extraction methods from wet microalgal biomass -- Simultaneous extraction, separation and characterization of biomolecules from microalgal biomass -- Direct transesterification of microalgal cells -- Real time biochemical profiling during microalgal cultivation -- Cost-effective downstream processing (DSP) of algal biomass for industrial scale biofuels production -- A continuous system of biofuel production from microalgal biomass -- Biorefinery for microalgal biomass at industrial production scale -- Modification in native strains for biofuel and by-products production without affecting the pool of indigenous wild strain verities -- Modification in biosynthesis pathways for specific biomolecules production without compromising with optimum cell growth and specific biomolecule yield -- Modification in environmental conditions for optimum specific biomolecules yield with compromising the cell growth rate and biomass productivity along with cost of production -- Modification in existing algal processing technologies to make it more cost-competitive and suitable to a wide range of algal species -- Development of scalable processing conversion technologies and its integration to biorefinery -- Reduction in production cost of algal biofuel and value-added by-products to current market prices derived from other than algae -- Mass transfer in transesterification as a rate limiting step -- Operational continuity -- Pre- treatment methods for effective resource recovery from microalgal biomass (ultrasound treatment, French pressing, microwave, thermal hydrolysis, enzymatic treatments ) -- Development of microalgal cell treatment methods to enhance extractability and bioavailability of therapeutically important biomolecules -- Genetic engineering to improve biosynthesis of a particular cell component -- Proteins to biofuels conversion through engineering nitrogen flux -- Application of chemicals to improve biosynthesis of high-value biomolecules -- Development of cost-effective high yielding cell disruption techniques -- Development of alternative to organic solvents for biorefinery.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031523182
    Weitere Ausg.: Printed edition: ISBN 9783031523205
    Weitere Ausg.: Printed edition: ISBN 9783031523212
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham, Switzerland :Springer,
    UID:
    edoccha_9961612695402883
    Umfang: 1 online resource (456 pages)
    Ausgabe: First edition.
    ISBN: 9783031523199
    Serie: Environmental Science and Engineering Series
    Anmerkung: Intro -- Contents -- 1 Biorefinery for Microalgal Biomass at an Industrial Production Scale -- 1.1 Introduction -- 1.1.1 Microalgal Chemical Components -- 1.1.2 Cultivation of Microalgae -- 1.2 Microalgae-Derived Products and Their Applications -- 1.2.1 Lipids as Feedstock for Producing Biodiesel -- 1.2.2 Protein-Utilization in Feed and Food Industry -- 1.2.3 Pigments-For Cosmetic and Pharmaceutical Industry -- 1.2.4 Carbohydrates-For Producing Bioethanol -- 1.2.5 Additional Biofuels Derived from Microalgae -- 1.2.6 Other Microalgal Applications -- 1.3 Microalgal Extracellular Metabolites -- 1.3.1 Allelopathic Chemicals -- 1.3.2 Exopolysaccharides -- 1.3.3 Extracellular Phytohormones -- 1.3.4 Extracellular Proteins -- 1.3.5 Organic Acids -- 1.4 Microalgal Biorefinery -- 1.5 Future Prospective -- 1.6 Conclusion -- References -- 2 Algal Biorefinery to Produce High-Value Carotenoids and Bioenergy -- 2.1 Introduction -- 2.2 Food vs Feed Debate -- 2.2.1 Generations of Biofuels: A Potential Threat for Food Security -- 2.2.2 Potential Ways to Address the Food Security Concern -- 2.3 Challenges in Commercialization of Algal Biofuel -- 2.4 Natural vs Synthetic Carotenoids -- 2.5 Astaxanthin -- 2.5.1 Astaxanthin Production -- 2.5.2 Astaxanthin Extraction -- 2.5.3 Astaxanthin Based Bioenergy Producing Algal Biorefinery -- 2.6 Lutein -- 2.6.1 Lutein Production -- 2.6.2 Lutein Extraction -- 2.6.3 Lutein Based Bioenergy Producing Algal Biorefinery -- 2.7 Conclusions -- References -- 3 Low-Cost Microalgae Cultivation Methods -- 3.1 Introduction -- 3.2 Cultivation Methods -- 3.3 The Importance of Pretreatments to Reduce Costs of Subsequent Processes -- 3.4 Bioproducts Obtained from Microalgal Biomass -- 3.4.1 Biofuels -- 3.4.2 Pharmaceutical Products -- 3.4.3 Bioplastics -- 3.4.4 Bioherbicides and Biofertilizers. , 3.5 Use of Microalgae for Environmental Purposes -- 3.6 Conclusion -- References -- 4 A Continuous System of Biofuel Production from Microalgal Biomass -- 4.1 Introduction -- 4.2 Cultivation System of Microalgal Biomass -- 4.2.1 Open Pond Cultivation System -- 4.2.2 Closed Cultivation System -- 4.2.3 Microalgae Cultivation Using Photobioreactor in Batch, Semi-continuous and Continuous Mode -- 4.3 Harvesting of Microalgal Biomass for Continuous Biofuel Production -- 4.3.1 Centrifugation -- 4.3.2 Filtration -- 4.3.3 Sedimentation -- 4.3.4 Flocculation -- 4.3.5 Flotation -- 4.4 Technique Required for Conversion of Microalgal Biomass into Biofuel -- 4.4.1 Physico-chemical Conversion -- 4.4.2 Biochemical Conversion -- 4.4.3 Thermochemical Conversion -- 4.5 Application -- 4.5.1 Microalgae Used as Human Food -- 4.5.2 Uses in Cosmetics -- 4.5.3 Uses in Biofertilizer -- 4.5.4 Uses in Pharmaceuticals -- 4.5.5 Uses in Aquaculture/Animal Feed -- 4.6 Future Prospect -- 4.7 Conclusion -- References -- 5 Development of Cost-Effective High Yielding Cell Disruption Techniques for Microalgae -- 5.1 Introduction -- 5.2 Types of Microalgal Cell Disruption -- 5.2.1 Mechanical Procedure -- 5.2.2 Non Mechanical Procedure -- 5.3 Conclusion and Future Perspectives -- References -- 6 Lipid Extraction Methods from Wet Microalgal Biomass -- 6.1 Introduction -- 6.2 Algae as a Source of Energy -- 6.3 Pre-Treatment of Algae -- 6.4 Lipid Extraction Techniques -- 6.4.1 Mechanical Approach -- 6.4.2 Solvent-Based Approach -- 6.4.3 Solvent-Free Approach -- 6.5 Conclusion -- 6.6 Future Directions -- References -- 7 Simultaneous Extraction, Separation and Characterization of Biomolecules from Microalgal Biomass -- 7.1 Introduction -- 7.2 Extraction of Biomolecules from Microalgal Biomass -- 7.2.1 Organic Solvent Extraction -- 7.2.2 Alternative Solvent Extraction. , 7.2.3 Supercritical Fluids Extraction -- 7.2.4 Microwave-Assisted Extraction (MAE) -- 7.2.5 Ultrasound-Assisted Extraction -- 7.2.6 Pressurized Liquid Extraction (PLE) -- 7.2.7 Enzyme-Assisted Extraction -- 7.2.8 Electrical Pre-Treatment Extraction -- 7.3 Separation of Biomolecules from Microalgal Biomass -- 7.3.1 Electrophoresis -- 7.3.2 Membrane Separation Technique -- 7.3.3 Ultracentrifugation -- 7.3.4 Aqueous Two-Phase Method -- 7.3.5 Phase Partitioning -- 7.3.6 Ammonium Sulfate Precipitation -- 7.4 Characterization of Biomolecules from Microalgal Biomass -- 7.4.1 Supercritical Fluid Chromatography -- 7.4.2 Column Chromatography -- 7.4.3 Permeation Chromatography -- 7.4.4 Ion-Exchange Chromatography -- 7.4.5 Affinity Chromatography -- 7.4.6 Thin-Layer Chromatography -- 7.4.7 High-Performance Liquid Chromatography -- 7.4.8 Counter Current Chromatography -- 7.4.9 Gas Chromatography -- 7.5 Conclusion -- References -- 8 Lipid Extraction Methods from Wet Microalgal Biomass -- 8.1 Introduction -- 8.2 Lipid and Algal Biomass as a Source of Bioenergy -- 8.3 Total Lipid Extraction Methods -- 8.3.1 Folch Method -- 8.3.2 Bligh and Dyer Method -- 8.3.3 Extraction of All Classes of Lipids -- 8.3.4 Superior Solvent Extraction Methods -- 8.3.5 In Situ Lipid Hydrolysis and Supercritical in Situ Transesterification -- 8.4 Algal Oil Extraction-A Mechanical Approach -- 8.4.1 Bead Beating -- 8.4.2 Expeller Press -- 8.4.3 Microwave -- 8.4.4 Ultrasonic-Assisted Extraction -- 8.4.5 Algal Oil Extraction Using Electroporation -- 8.5 A Novel Initiative by an Industry to Extract Algal Lipids -- 8.5.1 Osmotic Pressure Method -- 8.5.2 Solvent-Free Extraction Methods for Algal Biomass -- 8.5.3 Enzyme-Assisted Extraction -- 8.5.4 Isotonic Extraction Method -- 8.6 Prospects and Conclusion -- References. , 9 Simultaneous Extraction, Separation, and Characterization of Biomolecules from Microalgal Biomass -- 9.1 Background -- 9.2 Cell Disruption Methods -- 9.2.1 Mechanical and Physical Methods -- 9.2.2 Non-Mechanical Methods -- 9.3 Techniques for Destroying Microalgal Cells and Collecting Their Components -- 9.3.1 Organic Solvent Extraction of Biomolecules -- 9.3.2 Alternative Solvents Extraction -- 9.3.3 Supercritical Fluid Extraction -- 9.4 Methods of Analysis of Biomolecules from Microalgae -- 9.4.1 Supercritical Fluid Chromatography -- 9.4.2 Column Chromatography -- 9.4.3 Gel Filtration Chromatography -- 9.4.4 Ion-Exchange Chromatography -- 9.4.5 Affinity Chromatography -- 9.4.6 Thin-Layer Chromatography -- 9.4.7 High-Performance Liquid Chromatography -- 9.4.8 Counter Current Chromatography -- 9.4.9 Gas Chromatography -- 9.5 Separation and Purification Approaches -- 9.5.1 Electrophoresis -- 9.5.2 Membrane Separation Processes -- 9.5.3 Ultrafiltration -- 9.5.4 Electro-Membrane Filtration -- 9.5.5 Aqueous Two-Phase Systems -- 9.5.6 Three Phase Partitioning -- 9.5.7 Ammonium Sulfate Precipitation -- 9.6 Conclusion -- References -- 10 Economic Environment Friendly and Low-Cost Lipid Extraction Methods From Microalgae -- 10.1 Introduction -- 10.2 Microalgae as Source of Biofuel -- 10.3 Biochemical Composition of Microalgal Biomass -- 10.4 Types of Biofuels -- 10.5 Biodiesel from Microalgae -- References -- 11 Cost-Effective Downstream Processing of Algal Biomass for Industrial-Scale Biofuels Production -- 11.1 Introduction -- 11.1.1 Microalgae: Answer for Ever Looming Environmental Crisis -- 11.2 Microalgal Bioprocessing: Upstream to Downstream Processing -- 11.2.1 Upstream Processing -- 11.2.2 Downstream Processing -- 11.2.3 Limitations of Conventional DSP Units -- 11.3 Recent Advancements in Microalgal DSP in Biometabolite Production. , 11.3.1 Advances in Extraction Techniques -- 11.3.2 Developments in Downstream Purification Processes -- 11.3.3 Continuous Downstream Processing -- 11.4 Cost-Effective Downstream Processing of Algal Biomass: A Biorefinery Paradigm -- 11.5 Conclusion and Future Insights -- References -- 12 Pre-treatment Methods for Effective Resource Recovery from Microalgal Biomass -- 12.1 Introduction -- 12.2 Why Pre-Treatment is Important? -- 12.3 Pre-Treatments -- 12.3.1 Mechanical Pre-Treatment Method -- 12.3.2 Thermal Pre-Treatment Method -- 12.3.3 Physical Pre-Treatment Method -- 12.3.4 Chemical Pre-Treatment Method -- 12.3.5 Combined Pre-Treatment Method -- 12.3.6 Other Pre-Treatment Methods -- 12.4 Challenges -- 12.5 Conclusion -- References -- 13 Emerging Techniques for Extraction and Applications of Biomolecules from Microalgae -- 13.1 Introduction -- 13.2 Microalgae Cultivation System -- 13.2.1 Photoautotrophic Cultivation Mode -- 13.2.2 Heterotrophic Cultivation Mode -- 13.2.3 Mixotrophic Cultivation Mode -- 13.2.4 Photoheterotrophic Cultivation Mode -- 13.3 Valorisation of Algal Biomass for Production of High Value Compounds -- 13.3.1 Proteins -- 13.3.2 Polysaccharides -- 13.3.3 Bio-Oil -- 13.3.4 Vitamins -- 13.3.5 Pigments -- 13.3.6 Biosurfactants -- 13.4 Extraction Processes for Biomolecules from Microalgae -- 13.4.1 Physical Processes -- 13.4.2 Chemical Methods -- 13.4.3 Biological Processes -- 13.5 Purification Techniques for Biomolecules from Microalgae -- 13.6 Characterization Techniques for Biomolecules from Microalgae -- 13.7 Challenges and Future Prospect -- 13.8 Conclusion -- References -- 14 Impact of Algal Biomass for Pharmaceutical Application -- 14.1 Introduction -- 14.2 Bioactive Compounds that Make Algal Biomass Beneficial for Pharmaceutical Industry. , 14.3 Pharmaceutically Applicable Bioactive Macromolecules Extracted from Microalgal Biomass.
    Weitere Ausg.: Print version: Bharadvaja, Navneeta Recent Trends and Developments in Algal Biofuels and Biorefinery Cham : Springer International Publishing AG,c2024 ISBN 9783031523182
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer Nature Switzerland :
    UID:
    almafu_9961612695402883
    Umfang: 1 online resource (456 pages)
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031523199
    Serie: Environmental Science and Engineering,
    Inhalt: This book presents technoeconomic challenges, recent trends, and developments toward sustainable algal biofuels and biorefinery. The exponential increase in population and thus the demand for energy, the ever-rising threats to climate change with conventional fossil fuels consumption, fluctuations in fossil fuels price and geopolitical instability have made each and every country of the world to think over its energy independence and security by increasing its own domestic energy production and reducing dependence on scarce fossil fuels. The global need to shift towards a sustainable source of energy has led to the discovery of third and fourth generation biofuels, in which microalgae and their genetically modified strains have been exploited. However, these simple photosynthetic organisms are difficult to select and cultivate for the production of biodiesel. Genetic engineering has opened provisions for the introduction of desired traits to such useful strains. There are also scopes for designing of novel photobioreactors (PBRs) having strain-specific physicochemical parameters, adequate CO2 and nutrient supply, and so on. The role of microalgae in CO2 sequestration from the environment is well known fact. Wastewater treatment plants can be used a raceway pond for the microalgal biomass production, and thus, obtained biomass can be used for biofuels and biochemical production. Mathematical modelling can be used to understand the complex phenomena inside the photobioreactor, which can be a great help to overcome the limitations related to design and scale up of PBRs. Flow hydrodynamics in PBRs has significant effect on the microalgae growth. Computational fluid dynamics (CFD) can be used to study operating and geometry factors in PBRs that influence the flow dynamics, such as the inlet gas flow rate, mixing, mass transfer, reactor geometry. The use of artificial intelligence (AI) particularly artificial neural network model (ANN model), statistical and evolutionary learning-based techniques are some innovative approaches in manipulating and optimizing productivity and costs in algal biofuel production. This book is aimed to bring several aspects of algal biorefinery and microalgal biofuel production, challenges, and future perspective of microalgal biofuel production at a single place.
    Anmerkung: Development of a smart microalgae strain: Selection and successful outdoor large-scale cultivation of robust microalgae strain having high growth rate, high biomass productivity, high lipid content and immunity towards invasion of other microorganisms -- High throughput screening of high lipid yielding strains -- Omics approach for enhanced microalgae biomass production with enhanced concentration of desired biomolecules -- Low-cost cultivation methods -- Development of cost effective, energy efficient and easy to operate biomass harvesting methods and dewatering technologies -- Economic, environment friendly and low-cost lipid extraction methods -- Lipid specific extraction method to minimize the co-extraction of non-lipid fractions -- Lipid extraction methods from wet microalgal biomass -- Simultaneous extraction, separation and characterization of biomolecules from microalgal biomass -- Direct transesterification of microalgal cells -- Real time biochemical profiling during microalgal cultivation -- Cost-effective downstream processing (DSP) of algal biomass for industrial scale biofuels production -- A continuous system of biofuel production from microalgal biomass -- Biorefinery for microalgal biomass at industrial production scale -- Modification in native strains for biofuel and by-products production without affecting the pool of indigenous wild strain verities -- Modification in biosynthesis pathways for specific biomolecules production without compromising with optimum cell growth and specific biomolecule yield -- Modification in environmental conditions for optimum specific biomolecules yield with compromising the cell growth rate and biomass productivity along with cost of production -- Modification in existing algal processing technologies to make it more cost-competitive and suitable to a wide range of algal species -- Development of scalable processing conversion technologies and its integration to biorefinery -- Reduction in production cost of algal biofuel and value-added by-products to current market prices derived from other than algae -- Mass transfer in transesterification as a rate limiting step -- Operational continuity -- Pre- treatment methods for effective resource recovery from microalgal biomass (ultrasound treatment, French pressing, microwave, thermal hydrolysis, enzymatic treatments ) -- Development of microalgal cell treatment methods to enhance extractability and bioavailability of therapeutically important biomolecules -- Genetic engineering to improve biosynthesis of a particular cell component -- Proteins to biofuels conversion through engineering nitrogen flux -- Application of chemicals to improve biosynthesis of high-value biomolecules -- Development of cost-effective high yielding cell disruption techniques -- Development of alternative to organic solvents for biorefinery.
    Weitere Ausg.: Print version: Bharadvaja, Navneeta Recent Trends and Developments in Algal Biofuels and Biorefinery Cham : Springer International Publishing AG,c2024 ISBN 9783031523182
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783030523183?
Meinten Sie 9783031223082?
Meinten Sie 9783031223181?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz