Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Person/Organisation
Access
  • 1
    Online Resource
    Online Resource
    Cham :Springer Nature Switzerland :
    UID:
    almafu_9961574119702883
    Format: 1 online resource (360 pages)
    Edition: 1st ed. 2024.
    ISBN: 9783031590245
    Series Statement: Signaling and Communication in Plants,
    Content: In many parts of the world, soil and water are slightly to moderately contaminated with metals and metalloids such as Cd, Cu, Zn, Ni, Co, Cr, Pb, Si, B and As. This could be due to long-term use of phosphatic fertilizers, sewage sludge application, dust from smelters, industrial waste and bad watering practices in agricultural lands. Beside natural factors, human activities have contributed to the enormous increase in heavy metal and/or metalloid pollution in the environment. Metal and metalloid stress are major abiotic stress factors that limit crop production and reduce agricultural yield. The primary response of plants is the generation of reactive oxygen species (ROS) upon exposure to high levels of metals/metalloids. They either generate ROS directly through Haber-Weiss reactions or overproduction of ROS and occurrence of oxidative stress in plants could be the indirect consequence of metals/metalloids toxicity. The indirect mechanisms include their interaction with the antioxidant system, disrupting the electron transport chain or disturbing the metabolism of essential elements. One of the most deleterious effects induced by heavy metals exposure in plants is lipid peroxidation, which can directly cause biomembrane deterioration. The impact of metals/metalloids on plant water relations has to be distinguished from their effects on water availability in soils, on root growth, limiting water uptake, as well as other phytotoxic effects. If soils are high in soluble salts (including heavy metal salts), the osmotic potential in the soil solution might be lower than the potential of the cell sap in root. Under these circumstances, the soil solution would severely restrict the rate of water uptake by plants and lead to osmotic stress. Further, the negative influence metals/metalloids have on the growth and activities of soil microorganisms, may also indirectly affect the growth of plants. In the book “Metals and Metalloids in Plant Signaling”, we elucidated the effects of metals/metalloids on signaling and communication cascades in plants. The general aim of the present book is to provide a comprehensive analysis of the current situation and development in the field and to develop a science-based theoretical foundation for the conceptualization, and practical application. The various chapters are based on the consideration of metals/metalloids in terms of their action on different regulatory and functional systems of plants (signaling, metabolism, uptake, and transport mechanisms, etc.).
    Note: Chapter 1. Metal and Metalloid Toxicity in Plants: An Overview of Signaling Crosstalk -- Chapter 2. Uptake and Translocation Mechanisms of Metals/Metalloids in Plants through Soil and Water -- Chapter 3. Plants Responses to Metalloid Signal: Insight into Plant StressSignaling -- Chapter 4. Role of Boron in Plant Signaling -- Chapter 5. Copper and Cadmium Signalling in Plants under Stressed and Non-Stressed Conditions -- Chapter 6. Advances in Boron and Silicon Nutrition of Fruit Trees -- Chapter 7. Zinc-Dependant Signaling in Plants -- Chapter 8. Interaction of Selenium and Silicon with Phytohormones in Abiotic Stress Response -- Chapter 9. Iron Signaling in Oxidative Stress of Plants under Salt Stress: A Meta-Analysis -- Chapter 10.An overview of Aluminium Toxicity and Tolerance Mechanisms in Plants -- Chapter 11. Accumulation and Translocation of Arsenic: Impacts on Plant’s Ecophysiology -- Chapter 12. Volatile Signaling Molecules’ Interaction with Metal(loids) in Plants and Their Interplay with Redox Balance -- Chapter 13. Bioaccumulation and Tolerance Mechanisms of Fluoride in Plants -- Chapter 14. Role of Transporters in Mineral Uptake and Accumulation.
    Additional Edition: ISBN 9783031590238
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham, Switzerland :Springer,
    UID:
    edoccha_9961574119702883
    Format: 1 online resource (360 pages)
    Edition: First edition.
    ISBN: 9783031590245
    Series Statement: Signaling and Communication in Plants Series
    Note: Intro -- Preface -- Contents -- About the Editor -- An Overview of Metal and Metalloid Toxicity and Signaling in Plants -- 1 Introduction -- 2 Heavy Metal Effect on Plant Signaling -- 3 MAPK Signaling Under Heavy Metal Stress -- 4 The Role of Calcium Signaling in Stress Caused by HM -- 5 Hormone Signaling During Heavy Metal Stress -- 6 MicroRNA Regulation in Heavy Metal Stress -- 7 Modulation of Transcription Factors Under Stress from Heavy Metals -- 8 Metal Transport and Sequestration Using MAPK Signaling -- 9 Conclusion -- References -- Metalloids Accumulation and Translocation in Plants -- 1 Introduction -- 2 Plant Reaction in Response to Metalloid Stress -- 3 Metalloids Homeostasis and Signaling During Plant Uptake -- 4 ROS Mediate Redox Signaling and Regulate Metalloids Stress in Plants -- 5 Genes Involved in Metalloids Regulation and Uptake in Plants -- 6 Conclusion -- References -- Plants Response to Metalloid Signal: Insight into the Link Between Silicon and Plant Signalling -- 1 Introduction -- 1.1 Silicon Mediated Signalling in Plants -- 2 Silicon Mediated Biotic Stress Management in Plants -- 2.1 Two-Line Defence Against Biotic Stresses -- 2.2 Role of Si Against Fungal Infections -- 2.3 Role of Si Against Insect Attack and Nematode -- 2.4 Si Against Bacterial, Viral, Other Biotic Stresses -- 3 Silicon Mediated Abiotic Stress Management in Plants -- 3.1 Drought Stress -- 3.2 Salinity -- 3.3 Metal Toxicity -- 3.4 Temperature Stress -- 3.5 UV Stress -- 3.6 Nutrient Imbalance -- 4 Conclusion -- References -- Iron Signaling in Oxidative Stress of Plants Under Saline Conditions, A Meta-Analysis -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data Extraction -- 2.2 Meta-Analysis -- 3 Results -- 3.1 Salt Stress Level -- 3.2 Foliar Application Rate -- 3.3 Iron Solubility -- 3.4 Iron Particle Size -- 4 Discussion -- 5 Conclusions. , References -- Potassium in Plants: Possible Functions, Mechanisms and Proteomics Under Abiotic Environmental Stress -- 1 Introduction -- 2 Responses of Potassium in Biogeochemistry -- 3 General Behavior and Dynamics of Potassium -- 4 Role of Plant Morphology and Ecology in Plant K+ Uptake -- 5 Cellular Uptake Mechanisms -- 6 Proteomics Involved with Potassium Dynamics and Signaling -- 6.1 Potassium Channels -- 6.2 Potassium Transporters -- 7 Direct and Indirect Mechanism for K Transport -- 8 Source-Sink Relationship -- 9 Physiological and Cellular Functions of Potassium -- 10 Role of Potassium in Plant Under Abiotic Stresses -- 10.1 Drought -- 10.2 Salinity -- 10.3 Extreme Temperature -- 10.4 Toxic Metals/Metalloids -- 10.5 High Light Stress -- 10.6 Waterlogging -- 11 Conclusion -- References -- Copper and Cadmium Signaling in Plants Under Stressed and Non-stressed Conditions -- 1 Introduction -- 2 Sources of Cd and Cu -- 3 Phytotoxicity of Cd and Cu -- 4 Chemical Forms and Sub-cellular Distribution of Cd and Cu -- 5 Oxidative Challenge and Signaling Pathways Induced by Cd and Cu -- 6 Plant Metal Homeostasis and Tolerance -- 7 Metal Homeostasis by miRNAs -- 8 MicroRNA and Cu Tolerance -- 9 MicroRNA and Cd Tolerance -- 10 Conclusion -- References -- Metabolic Inevitability of Boron in Phyto-system -- 1 Introduction -- 2 Boron (B) Transmission in Plants -- 3 Boron Absorption and Transport in Plants -- 3.1 Boron Uptake in Plant Roots -- 3.2 Boron Allocation in Plants -- 4 Lack of Boron in Plants -- 4.1 Role of Boron in Cellular Boundaries and Walls -- 5 Nitrogen Metabolism and Its Utilization -- 5.1 Role of Boron in Oxidational Stress and Secondary Breakdown -- 6 Plant Toxicity of Boron -- 6.1 Toxicity to Boron and Salt Stress -- 6.2 Boron-Toxicity Tolerance -- 7 Conclusion -- References -- Chromium Toxicity in Plants: An Overview of Plant Signaling. , 1 Introduction -- 2 Chromium as an Environmental Pollutant -- 3 Intake and Transportation of Cr in Plants -- 4 Impact of Cr on Nutrient Absorption -- 5 Impact of Cr on Chlorophyll Molecule and Photosynthesis -- 6 Reactive Oxygen Species (ROS) and Oxidative Stress -- 7 Impact of Cr on the Enzymatic Antioxidant System -- 8 Impact of Chromium on the Non-enzymatic Antioxidant System -- 9 Effect of Chromium on Plant Hormone Endogenous Levels -- 10 Genotoxicity and DNA Damage Caused by Chromium -- 11 Signal Transduction and Molecular Mechanisms in Controlling Plant Chromium Stress -- 12 Chromium-Mediated Regulation on Several Plant Elements and Seed Germination -- 12.1 Seed Germination -- 12.2 Change in Shoot Growth and Development Induced by Chromium -- 12.3 Modifications in the Shoot's Growth and Development Driven by Chromium -- 12.4 Modifications of Leaf Growth as well as Structure Influenced by Chromium -- 13 Conclusion -- References -- Arsenic Induced Toxicity and Regulation Through Metabolomic, Hormonal and Signaling Hubs in Plants -- 1 Introduction -- 2 Effects of Arsenic on Carbon, Nitrogen and Sulfur Metabolism -- 2.1 Carbon Metabolism -- 2.2 Nitrogen Metabolism -- 2.3 Sulfur Metabolism -- 3 Signalling Hubs Involved in Arsenic Stress Regulation -- 3.1 Calcium Signaling in Arsenic Stress -- 3.2 MAPK Signaling in Arsenic Stress -- 3.3 Reactive Oxygen Species (ROS) Signaling in Arsenic Stress -- 3.4 Reactive Nitrogen Species and Their Role in Metal Stress -- 4 Role of Phytohormones in Arsenic Stress Tolerance -- 4.1 Auxins -- 4.2 Cytokinin -- 4.3 Gibberellic Acid -- 4.4 Abscisic Acid -- 4.5 Ethylene -- 4.6 Jasmonic Acid -- 4.7 Brassinosteroids -- 4.8 Salicylic Acid (SA) -- 4.9 Strigolactones (SL) -- 5 Cross-Talk Among Phytohormones and Reactive Oxygen Species (ROS) -- 6 Conclusions -- References. , Sodium-Induced Calcium Signaling in Plants Under Salinity Stress -- 1 Introduction -- 2 Perception of Salt Stress in Plants -- 2.1 Primary Uptake of Sodium via Non-selective Cation Channels (NSCC) -- 2.2 Potassium Transporters (KT) -- 2.3 High-Affinity Potassium Transporters (HKT) -- 2.4 Na+/H+ Exchanger (NHX) -- 2.5 MOCA1 (Monocation-Induced Ca2+ Increases 1) -- 2.6 Osmo-Sensory Calcium Antiporter1 (OSCA1) -- 2.7 Potassium Exchange Antiporter (KEA) -- 2.8 FERONIA (FER) -- 3 Defense Mechanism via Calcium Signaling Under Salinity Stress: SOS Response -- 4 Conclusion -- References -- Interaction of the Selenium and Silicon with Hormones in Drought Stress Response -- 1 Introduction -- 2 Interaction Between Selenium and Hormones -- 2.1 Auxin -- 2.2 Gibberellin (GAs) -- 2.3 Cytokinin -- 2.4 Abscisic Acid -- 2.5 Salicylic Acid -- 3 Interaction Between Silicon and Hormones -- 3.1 Auxins -- 3.2 Gibberellins -- 3.3 Cytokinins -- 3.4 Ethylene and Abscisic Acid -- 3.5 Jasmonates -- 3.6 Salicylates -- 3.7 Brassinosteroids -- 4 Conclusions and Future Perspectives -- References -- Zinc in Plants: Biochemical Functions and Dependent Signaling -- 1 Introduction -- 2 Zn Uptake and Transport -- 3 Biochemical Functions of Zn -- 4 Effects of Zn Deficiency on Plants -- 5 Effects of Zn Toxicity on Plants -- 6 Interactions Between Zn and Other Nutrients -- 7 Zn and Plant Metabolisms -- 7.1 Effect of Zn on Nitrogen Metabolism -- 7.2 Effect of Zn on Protein Metabolism -- 7.3 Effect of Zn on Oxidative Metabolism -- 7.4 Effect of Zn on Antioxidative Status -- 8 Role of Zn Against Biotic and Abiotic Stresses -- 8.1 Zn Functions Against Pathogens in Plants -- 8.2 Zn Functions Against Drought Stress in Plants -- 9 Conclusion -- References -- The Role of Silicon in Overcoming Abiotic Stresses -- 1 Introduction -- 2 The Role of Silicon in Mitigating Abiotic Stress Effects on Plants. , 2.1 Drought Stress -- 2.2 Salinity Stress -- 2.3 Heavy Metal(S) Stress -- 2.4 Heat Stress -- 2.5 UV Stress -- 3 The Role of Si in Signal Transmission -- 4 Conclusions and Future Prospects -- References -- Molecular Signaling and Cellular Cross-Talk to Tackle Metal(loid) Stress: Decoding Plants' Secret Saga of Survival -- 1 Introduction -- 2 Plant-Metal Interactions -- 2.1 Direct Responses to TM Stress -- 2.2 Indirect Response to TMs Stress -- 3 Signal Transduction Under TMs Stress -- 3.1 Calcium-Mediated Signaling -- 3.2 Reactive Oxygen Species (ROS) Signaling -- 3.3 Mitogen-Activated Protein Kinase (MAPK) Cascade -- 3.4 Phytohormones Signaling -- 3.5 MicroRNA (MiRNA) Mediated Signaling -- 4 Signaling Cross-Talk -- 5 Plant Response -- 5.1 Phytohormones -- 5.2 Phytochelatins (PCs) -- 5.3 Metallothioneins (MTs) -- 5.4 Amino Acids -- 6 Modulation of Signaling Pathway -- 7 Conclusions and Future Perspective -- References -- Salicylic Acid Signals Plant Defence Against Cadmium Toxicity -- 1 Introduction -- 2 Harmful Effects of Cadmium on Plants -- 2.1 Effects on Root and Structure -- 2.2 Effects on Physiological Process -- 2.3 Effects on Nutritional Intake -- 2.4 Oxidative Injury -- 3 Effects of Exogenous Salicylic Acid on Plants Under Stress from Cadmium -- 4 Salicylic Acid Signals Against Toxicity from Cadmium -- 4.1 Morphology and Development -- 4.2 Immobilisation of Cd in the Cell Wall -- 4.3 Cd Uptake and Translocation in Plant -- 4.4 Intake of Elements -- 4.5 Photosynthesis -- 4.6 Antioxidant Defence System and Reactive Oxygen Species (ROS) -- 4.7 Glutathione and Chelation -- 4.8 Senescence -- 5 Crosstalk of SA with Other Plant Growth Regulators -- 6 Conclusion -- References -- Heavy Metals Remediation in Plants Through Genetic Tools: A Boon for Mankind -- 1 Introduction -- 1.1 Metals and Metalloids Toxicity in Plants. , 1.2 Bioremediation: An Eco-friendly Approach to Waste Management.
    Additional Edition: ISBN 9783031590238
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783030590246?
Did you mean 9783030597245?
Did you mean 9783000590245?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages