Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949772698002882
    Format: VIII, 335 p. 22 illus., 20 illus. in color. , online resource.
    Edition: 1st ed. 2024.
    ISBN: 9783031607615
    Content: This book covers the fundamentals, limitations, and challenges of phytoremediation in contaminated water, air, and soil due to rapid demographic and industrial development. This foundational knowledge is necessary to combat negative impacts on human and environmental health brought on by practices such as ore mining, gas emission, pesticide application, and municipal waste generation. The book explains the phytoremediation of organic and inorganic pollutants via different types of microbes, fungi, and various plant groups to improve the quality of contaminated systems, and discusses emerging advancements and technologies, such as nanotechnology, for reducing toxic pollution. The mechanisms of phytoremediation are a primary point of focus to understand the basics, and for readers to apply this knowledge in a variety of contexts where phytoremediation is a useful tool in improving the quality of polluted water, air, and soil. The book is mainly intended for researchers in the fields of botany, agriculture, biotechnology, and environmental engineering, but will also be of interest to policymakers, NGOs, and academics working on environmental management.
    Note: 1. Chronicle of the fundamentals and developments of phytoremediation on a historical scale -- 2. Mechanism of various types of phytoremediation techniques and their suitability for different purposes -- 3. Bioavailability of pollutants and phytoremediation efficiency.-4. Limitations and challenges in phytoremediation.-5. Molecular approaches to phytoremediation.-6. Phytoremediation of chemical pollutants and toxic metals by bacteria and PGPRs (plant-growth-promoting rhizobacteria (PGPR) .-7. Phytoremediation of pollutants using Fungi.-8. Phytoremediation of pollutants by Algae and Hydrophytes.-9. Phytoremediation of Chemical Pollutants and Heavy Metals by Higher Terrestrial Plants.-10. Phytoremediation potential of pollutant-degrading endophytes.-11. Removal of contaminants through Phytoremediation from soil.-Phytoremediation techniques are used to degrade and remove various type of pollutants from.-12. Phytoremediation to remove contaminants from water.-13. Removal of toxic chemicals from Air through Phytoremediation.-14. Application of nanotechnology for phytoremediation.-15. Genetically modified organisms (GMOs) in phytoremediation.-16. Recent advancements and future prospects of phytoremediation.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783031607608
    Additional Edition: Printed edition: ISBN 9783031607622
    Additional Edition: Printed edition: ISBN 9783031607639
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edoccha_9961612708702883
    Format: 1 online resource (334 pages)
    Edition: 1st ed.
    ISBN: 9783031607615
    Note: Intro -- Preface -- Contents -- Cyanoremediation: An Overview -- 1 Introduction -- 2 Heavy Metal Pollutants -- 3 Organic and Inorganic Pollutant Contamination -- 4 Remediation of Contaminants -- 4.1 Physical Methods -- 4.1.1 Thermal Treatment -- 4.1.2 Soil Washing -- 4.1.3 Soil Replenishment Techniques -- 4.1.4 Vitrification -- 4.1.5 Encapsulation -- 4.1.6 Electroremediation -- 4.2 Chemical Methods -- 4.2.1 Precipitation -- 4.2.2 Ion Exchange -- 4.2.3 Flocculation -- 4.2.4 Chemical Extraction and Oxidation -- 4.2.5 Chemical Leaching -- 4.2.6 Membrane Filter Processes -- 4.2.7 Soil Amendments (Chemical Fixation) -- 4.3 Biological Methods -- 5 Bioremediation: An Eco-Friendly Approach -- 5.1 Intrinsic Bioremediation -- 5.2 Engineered Bioremediation -- 6 Cyanoremediation -- 7 Mechanism of Cyanoremediation -- 7.1 Mechanisms of Biosorption -- 7.2 Mechanisms of Bioaccumulation -- 8 Factors Affecting Cyanoremediation -- 8.1 pH -- 8.2 Competing Ions -- 8.3 Temperature -- 8.4 Contact Time -- 8.5 Initial Metal Concentration -- 8.6 Biosorbent Dosage -- 8.7 Modification of Biosorbents -- 8.8 Chemical Treatment of Biosorbent -- 9 Advantages of Cyanoremediation -- 10 Challenges of Cyanoremediation -- 11 Conclusions and Future Perspectives -- References -- Phytoremediation of Contaminated Water, Its Mechanisms, and Advancements -- 1 Introduction -- 2 Water Contaminants -- 3 Phytoremediation of Contaminated Water -- 4 Mechanism of Phytoremediation -- 4.1 Phytoextraction -- 4.2 Phytodegradation -- 4.3 Phytostabilization -- 4.4 Phytovolatilization -- 4.5 Phycoremediation -- 4.6 Rhizofiltration -- 4.7 Rhizodegradation -- 5 Advances in Phytoremediation -- 5.1 Hyperaccumulator -- 5.2 Physical-/Chemical-Assisted Materials -- 5.3 Microbial Stimulation -- 6 Factors Affecting Phytoremediation -- 7 Limitations and Disadvantages of Phytoremediation -- 8 Conclusion. , References -- An Overview of Different Plant Species Used for the Phytoremediation of Soil Contaminants -- 1 Introduction -- 2 Plant Species Implemented for Inorganic and Organic Contaminants -- 2.1 Woody Plant Species -- 2.2 Ornamental Plant Species -- 2.3 Aromatic Plant Species -- 2.4 Oil-Yielding Plant Species -- 2.5 Fibrous Plant Species -- 3 Proper Disposal of Contaminated Biomass -- 3.1 Heat Treatment -- 3.2 Extraction Treatment -- 3.3 Microbial Treatment -- 3.4 Compression Landfill -- 3.5 Synthesis of Nanomaterials -- 4 Limitation -- 5 Conclusion -- References -- Removal of Toxic Chemicals from Air Through Phytoremediation -- 1 Introduction -- 2 Toxic Chemicals in Air/Air Pollutants -- 2.1 Particulate Matter (PM) -- 2.2 Sulfate, Sulfuric Acid, and Sulfur Oxides (SOx) -- 2.3 Ozone -- 2.4 Nitrogen Oxide (NOx) -- 2.5 Carbon Monoxide (CO) -- 2.6 Benzene -- 2.7 Formaldehyde -- 3 Phytoremediation and Mechanisms of Phytoremediation -- 3.1 Absorption of Air Pollutants -- 3.1.1 Stomata -- 3.1.2 Cuticle -- 3.1.3 Mesophyll and Cell Barriers -- 4 Phytoremediation of Different Air Pollutants -- 4.1 Phytoremediation of Particulate Matter (PM) -- 4.2 Phytoremediation of Volatile Organic Compounds (VOC) -- 4.3 Phytoremediation of Inorganic Air Pollutants (IAPs) -- 4.4 Phytoremediation of Organic Compounds -- 5 Limitations and Disadvantages of Phytoremediation -- 6 Conclusion -- References -- Bamboo: A Potential Candidate for Phytoremediation of Chemical Pollutants and Heavy Metals -- 1 Introduction -- 2 Phytoremediation Potential of Bamboo -- 3 Socio-economic and Other Ecological Significance of Bamboo -- 4 Effect of Abiotic Environmental Stresses on Bamboo -- 5 Stepping Up Efforts to Improve Metal Uptake -- 5.1 Intercropping -- 5.2 Use of Additives and Amendments -- 5.2.1 Natural Additives -- 5.2.2 Chemical Additives -- 5.3 Surface Cover. , 5.4 Microbe-Stimulated Phytoremediation -- 5.5 Transgenic Plants -- 6 Recommendations and Future Research Prospects -- 7 Conclusions -- References -- Phytoremediation of Chemical Pollutants and Heavy Metals by Higher Plants -- 1 Introduction -- 2 Chemical Pollutants and Heavy Metals -- 2.1 Heavy Metal Uptake and Translocation by Plants -- 3 The Mechanism of Detoxification in Terrestrial Plants -- 3.1 Avoidance -- 3.2 Phytoremediation -- 3.2.1 Phytostabilization -- 3.2.2 Phytovolatilization -- 3.2.3 Phytoextraction -- 3.2.4 Phytovolatilization -- 3.2.5 Phytofiltration -- 3.3 Removal of Dyes by Higher Plants -- 3.4 Effect of Metals on Plant Health -- 3.4.1 Enhancing Plant Performance -- 3.5 Land Plants That Hyperaccumulate Heavy Metals -- 4 Future Aspects -- 4.1 Gene Editing -- 4.2 Metal Bioavailability -- 5 Conclusion -- References -- Phytoremediation of Heavy Metals by Vetiver Grass near Riverbeds -- 1 Introduction -- 2 Role of Heavy Metals on Water Quality -- 3 Phytoremediation by Vetiver Grass System -- 4 Literature Review on the Potential of VG in Heavy Metal Absorbance -- 5 Characteristics of Vetiver Grass -- 5.1 Morphological Characteristics -- 5.2 Genetic Characteristics -- 5.3 Physiological Characteristics -- 5.4 Economic Characteristics -- 6 Mechanism of Phytoremediation in Vetiver Grass -- 7 Conclusion -- References -- Genomically Enhanced Microorganisms (GEMs): Biological Gems in the Maintenance of the Equilibrium Endurance of the Ecosystem -- 1 Introduction -- 2 Current Status of Metals and Metalloid Contamination in the Ecosystem -- 3 Metal and Metalloid Accumulation in Living Organisms -- 4 Genetically Engineered Microbes -- 5 Construction of Genomically Enhanced Microbes -- 6 Molecular Tools Used for Enhancing the Genome of Microorganisms -- 6.1 Rational Designing of Genome -- 6.2 Direct Evolution Engaged in Enhancement of the Genome. , 6.3 Enhancement of Microorganismal Genome Through Mutagenesis -- 6.4 Metabolic Enhancer of the Genome -- 6.5 Transcriptome Profiling of Microorganisms -- 6.6 Genetically Encoded Proteins and Peptides -- 7 Pathways of Metal and Metalloid Biosorption in GEMs -- 8 Genomically Enhanced Bacteria in Bioremediation -- 9 Genomically Enhanced Fungi in Mycoremediation -- 10 Genomically Enhanced Algae in Phycoremediation -- 11 Risk Related to GEMs -- 12 Future Prospective -- References -- Phytoremediation of Heavy Metal Pollutants Using Fungi -- 1 Introduction -- 1.1 History of Phytoremediation -- 2 Possible Origins of Heavy Metal Contamination and Its Effect on Plants and Humans -- 3 Fungal Phytoremediation and Factors Affecting Phytoremediation -- 3.1 Factors Affecting Fungal Phytoremediation -- 4 Mechanisms of Fungi-Mediated Phytoremediation of Pollutants -- 5 Significance of AMF in Bioremediation of Pollutants and Protection of Plant Health -- 5.1 Arsenic (As) -- 5.2 Cadmium (Cd) -- 5.3 Lead (Pb) -- 5.4 Chromium (Cr) -- 6 Endophytic Fungi -- 6.1 Importance of Fungal Endophytes in Phytoremediation -- 7 Conclusion -- References -- Harnessing the Potential of Mycorrhizae in Phytoremediation Copper (Cu) from Soil -- 1 Introduction -- 2 Phytoremediation of Copper -- 2.1 The Mechanism of Copper Remediation Through Arbuscular Mycorrhizal Fungi -- 2.2 Increased Nutrient Acquisition in the Host Plant Colonized by AMF -- 3 Activation of Plant Defense System by AMF -- 3.1 Activation of Antioxidative Compounds -- 3.2 Enhanced Copper Adsorption -- 3.3 Activation of Transporters -- 3.4 Enhanced Synthesis of Chaperon Proteins -- 3.5 Amelioration of Copper Toxicity in Plants -- 4 Conclusion -- References -- Arbuscular Mycorrhizal Fungi (AMF): A Natural Tool for Phytoremediation of Heavy Metals (HMs) -- 1 Introduction -- 2 Mycorrhiza and Metalliferous Environments. , 2.1 Metal-Polluted Soil Phytoremediation by Mycorrhiza -- 2.1.1 Detoxification and Tolerance Mechanism of Heavy Metals by Fungal Mycorrhiza -- 2.2 Phytoremediation of Heavy Metals (HMs) by Arbuscular Mycorrhizal Fungi (AMFs) -- 2.2.1 Increase of Nutrient Uptake in the Host Plant Induced by AFMs -- 2.2.2 Enzymatic and Non-enzymatic Activation Defense System Induced by AMF -- 2.2.3 Plant Biomass and Tolerance Improvement by AFMs in Heavy Metal-Rich Soil -- 2.2.4 HM Remediation by AFM-Induced Changes in Root Morphology in Mycorrhizal Plant -- 2.2.5 Sequestration and Accumulation of HMs by AMF-Assisted Glomalin -- 2.2.5.1 Accumulation of Heavy Metals by AMF -- 3 Challenges and Future Prospects -- 4 Discussion and Conclusion -- References -- Phytoremediation of Chemical Pollutants and Toxic Metals by Bacteria and Plant-Growth-Promoting Rhizobacteria -- 1 Introduction -- 2 Sources of Heavy Metal in Soil -- 3 Consequences of Heavy Metals on Human Health -- 4 Phytoremediation Techniques -- 4.1 Phytostabilization -- 4.2 Phytovolatilization -- 4.3 Phytoextraction -- 4.4 Phytofiltration -- 5 Function of Plant-Linked Microbes in Enhancing the Phytoremediation Process -- 5.1 Adsorption of Heavy Metals by Bacteria -- 5.2 Promoting Taking Up of Heavy Metals by Hyperaccumulators -- 5.3 Efficiency of Plant Growth-Promoting Bacteria (PGPB) -- 5.4 Mechanism Used to Directly Promote Plant Growth -- 5.4.1 Auxins -- 5.4.2 Cytokinin and Gibberellins -- 5.4.3 Bacterial Enzyme ACC Deaminase (1-Aminocyclopropane-1 Carboxylate) -- 5.4.4 Role of Siderophores Secreted by Bacteria -- 5.4.5 Solubilization of Phosphate -- 5.4.6 Key Role of Bacteria in Fixation of Nitrogen -- 6 Challenges in Bacteria-Aided Phytoremediation -- 7 Conclusion -- References -- Unveiling the role of PGPRs (Plant Growth-Promoting Rhizobacteria) in phytoremediation of chemical pollutants and heavy metals. , 1 Introduction.
    Additional Edition: Print version: Madhav, Sughosh Phytoremediation Cham : Springer International Publishing AG,c2024 ISBN 9783031607608
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783031607165?
Did you mean 9783030617615?
Did you mean 9783031074615?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages