Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949892186902882
    Format: XII, 182 p. 129 illus., 99 illus. in color. , online resource.
    Edition: 1st ed. 2024.
    ISBN: 9783031700088
    Content: This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an "experiment first" approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced. The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.
    Note: 1. Introduction -- 2. Scientific Analysis of ML Systems -- 3. Motivation and Best Practices for Machine Learning Designers and Testers -- 4. Unit Test vs. System Test of ML Based Systems -- 5. ML Testing -- 6. Principles of Drift Detection and ML Solution Retraining -- 7. Drift Detection by Measuring Distribution Differences -- 8. Sequential Drift Detection -- 9. Drift in Characterizations of Data -- 10. A Framework Analysis for Alternating Components and Drift -- 11. Optimal Integration of the ML Solution in the Business Decision Process -- 12. Testing Solutions Based on Large Language Models -- 13. A Detailed Chatbot Example.
    In: Springer Nature eBook
    Additional Edition: Printed edition: ISBN 9783031700071
    Additional Edition: Printed edition: ISBN 9783031700095
    Language: English
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_9961708089002883
    Format: 1 online resource (187 pages)
    Edition: First edition.
    ISBN: 3-031-70008-2
    Content: This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an “experiment first” approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced. The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.
    Note: 1. Introduction -- 2. Scientific Analysis of ML Systems -- 3. Motivation and Best Practices for Machine Learning Designers and Testers -- 4. Unit Test vs. System Test of ML Based Systems -- 5. ML Testing -- 6. Principles of Drift Detection and ML Solution Retraining -- 7. Drift Detection by Measuring Distribution Differences -- 8. Sequential Drift Detection -- 9. Drift in Characterizations of Data -- 10. A Framework Analysis for Alternating Components and Drift -- 11. Optimal Integration of the ML Solution in the Business Decision Process -- 12. Testing Solutions Based on Large Language Models -- 13. A Detailed Chatbot Example.
    Additional Edition: ISBN 3-031-70007-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783031200588?
Did you mean 9783031100888?
Did you mean 9783030700188?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages