Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Berlin ;Boston :De Gruyter,
    UID:
    almafu_9958353886002883
    Umfang: 1 online resource
    ISBN: 9783110206616
    Inhalt: The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and com
    Anmerkung: Frontmatter -- , Contents -- , Fractals and dimension -- , Iterative function systems -- , Iteration of complex polynomials -- , Bibliography -- , List of symbols -- , Index -- , Contents (detailed) , In English.
    Weitere Ausg.: ISBN 978-3-11-019092-2
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    URL: Cover
    URL: Cover
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Berlin [u.a.] :de Gruyter,
    UID:
    almafu_BV022531138
    Umfang: V, 177 S. : , Ill., graph. Darst. ; , 25 cm.
    Ausgabe: 1. Aufl.
    ISBN: 978-3-11-019092-2 , 3-11-019092-3
    Anmerkung: Literaturverz. S. 165 - 167
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-11-020661-6
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Fraktal
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    Berlin [u.a.] : Walter de Gruyter GmbH & Co. KG
    UID:
    kobvindex_ZLB14148720
    Umfang: V, 177 Seiten , Ill., graph. Darst.
    ISBN: 9783110190922 , 3110190923
    Anmerkung: Literaturverz. S. 165 - 167 , Text engl.
    Sprache: Englisch
    Schlagwort(e): Fraktal
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Buch
    Buch
    Berlin [u.a.] : de Gruyter
    UID:
    b3kat_BV022531138
    Umfang: V, 177 S. , Ill., graph. Darst. , 25 cm
    Ausgabe: 1. Aufl.
    ISBN: 9783110190922 , 3110190923
    Anmerkung: Literaturverz. S. 165 - 167
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-11-020661-6
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Fraktal
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Berlin [u.a.] : de Gruyter
    UID:
    b3kat_BV035461546
    Umfang: 1 Online-Ressource (V, 177 S.) , Ill., graph. Darst. , 25 cm
    Ausgabe: 1. Aufl.
    ISBN: 3110190923 , 9783110190922 , 9783110206616
    Anmerkung: Literaturverz. S. 165 - 167
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Fraktal
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Berlin ;Boston :De Gruyter,
    UID:
    edocfu_9958353886002883
    Umfang: 1 online resource
    ISBN: 9783110206616
    Inhalt: The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and com
    Anmerkung: Frontmatter -- , Contents -- , Fractals and dimension -- , Iterative function systems -- , Iteration of complex polynomials -- , Bibliography -- , List of symbols -- , Index -- , Contents (detailed) , In English.
    Weitere Ausg.: ISBN 978-3-11-019092-2
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Berlin [u.a.] :de Gruyter,
    UID:
    edocfu_BV042347017
    Umfang: 1 Online-Ressource (V, 177 S.) : , Ill., graph. Darst.
    ISBN: 978-3-11-020661-6
    Anmerkung: "The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and complex analysis. The book contains over 170 color illustrations."
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-11-019092-2
    Sprache: Englisch
    Schlagwort(e): Fraktal
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Berlin ; : Walter de Gruyter,
    UID:
    almafu_9958082393402883
    Umfang: 1 online resource (188 p.)
    Ausgabe: 1st ed.
    ISBN: 1-282-19665-0 , 9786612196652 , 3-11-020661-7
    Inhalt: The first instance of pre-computer fractals was noted by the French mathematician Gaston Julia. He wondered what a complex polynomial function would look like, such as the ones named after him (in the form of z2 + c, where c is a complex constant with real and imaginary parts). The idea behind this formula is that one takes the x and y coordinates of a point z, and plug them into z in the form of x + i*y, where i is the square root of -1, square this number, and then add c, a constant. Then plug the resulting pair of real and imaginary numbers back into z, run the operation again, and keep doing that until the result is greater than some number. The number of times you have to run the equations to get out of an 'orbit' not specified here can be assigned a colour and then the pixel (x,y) gets turned that colour, unless those coordinates can't get out of their orbit, in which case they are made black. Later it was Benoit Mandelbrot who used computers to produce fractals. A basic property of fractals is that they contain a large degree of self similarity, i.e., they usually contain little copies within the original, and these copies also have infinite detail. That means the more you zoom in on a fractal, the more detail you get, and this keeps going on forever and ever. The well-written book 'Getting acquainted with fractals' by Gilbert Helmberg provides a mathematically oriented introduction to fractals, with a focus upon three types of fractals: fractals of curves, attractors for iterative function systems in the plane, and Julia sets. The presentation is on an undergraduate level, with an ample presentation of the corresponding mathematical background, e.g., linear algebra, calculus, algebra, geometry, topology, measure theory and complex analysis. The book contains over 170 color illustrations.
    Anmerkung: Description based upon print version of record. , Frontmatter -- , Contents -- , Fractals and dimension -- , Iterative function systems -- , Iteration of complex polynomials -- , Bibliography -- , List of symbols -- , Index -- , Contents (detailed) , Issued also in print. , English
    Weitere Ausg.: ISBN 3-11-019092-3
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783110130942?
Meinten Sie 9783110132922?
Meinten Sie 9783110140927?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz