Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    UID:
    almahu_9949462254002882
    Umfang: 1 online resource (972 p.)
    Ausgabe: 2nd rev. and exp. ed.
    ISBN: 9783110218114 , 9783110494969
    Serie: De Gruyter Expositions in Mathematics , 41
    Inhalt: This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
    Anmerkung: Frontmatter -- , Contents -- , Introduction -- , List of Symbols -- , Part I. Some useful classes of modules -- , Chapter 1. S-completions -- , Chapter 2. Pure-injective modules -- , Chapter 3. Mittag-Leffler modules -- , Chapter 4. Slender modules -- , Part II. Approximations and cotorsion pairs -- , Chapter 5. Approximations of modules -- , Chapter 6. Complete cotorsion pairs -- , Chapter 7. Hill lemma and its applications -- , Chapter 8. Deconstruction of the roots of Ext -- , Chapter 9. Modules of projective dimension one -- , Chapter 10. Kaplansky classes and abstract elementary classes -- , Chapter 11. Independence results for cotorsion pairs -- , Chapter 12. The lattice of cotorsion pairs -- , Part III. Tilting and cotilting approximations -- , Chapter 13. Tilting approximations -- , Chapter 14. 1-tilting modules and their applications -- , Chapter 15. Cotilting classes -- , Chapter 16. Tilting and cotilting classes over commutative noetherian rings -- , Chapter 17. Tilting approximations and the finitistic dimension conjectures -- , Bibliography -- , Index -- , Part IV Prediction principles -- , Chapter 18. Survey of prediction principles using ZFC and more -- , Chapter 19. Prediction principles in ZFC: the Black Boxes and others -- , Part V. Endomorphism algebras and automorphism groups -- , Chapter 20. Realising algebras - by algebraically independent elements and by prediction principles -- , Chapter 21. Automorphism groups of torsion-free abelian groups -- , Chapter 22. Modules with distinguished submodules -- , Chapter 23. R-modules and fields from modules with distinguished submodules -- , Chapter 24 Endomorphism algebras of אn-free modules -- , Part VI. Modules and rings related to algebraic topology -- , Chapter 25. Localisations and cellular covers, the general theory for R-modules -- , Chapter 26. Tame and wild localisations of size ≤ 2 ℵ0 -- , Chapter 27. Tame cellular covers -- , Chapter 28. Wild cellular covers -- , Chapter 29. Absolute E-rings -- , Part VII. Cellular covers, localisations and E(R)-algebras -- , Chapter 30. Large kernels of cellular covers and large localisations -- , Chapter 31. Mixed E(R)-modules over Dedekind domains -- , Chapter 32. E(R)-modules with cotorsion -- , Chapter 33. Generalised E(R)-algebras -- , Chapter 34. Some more useful classes of algebras -- , Bibliography -- , Index , Issued also in print. , Mode of access: Internet via World Wide Web. , In English.
    In: DG Expositions in Mathematics Backlist eBook Package, De Gruyter, 9783110494969
    In: DGBA Backlist Complete English Language 2000-2014 PART1, De Gruyter, 9783110238570
    In: DGBA Backlist Mathematics 2000-2014 (EN), De Gruyter, 9783110238471
    In: DGBA Mathematics - 2000 - 2014, De Gruyter, 9783110637205
    In: E-BOOK GESAMTPAKET / COMPLETE PACKAGE 2012, De Gruyter, 9783110288995
    In: E-BOOK PACKAGE MATHEMATICS, PHYSICS, ENGINEERING 2012, De Gruyter, 9783110293722
    In: E-BOOK PAKET MATHEMATIK, PHYSIK, INGENIEURWISS. 2012, De Gruyter, 9783110288926
    Weitere Ausg.: ISBN 9783110218107
    Sprache: Englisch
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_1655764098
    Umfang: 1 Online-Ressource (xxviii, 972 Seiten)
    Ausgabe: 2nd revised and extended edition
    ISBN: 9783110218114 , 3110218119 , 3110218100
    Serie: De Gruyter Expositions in Mathematics 41
    Inhalt: This monograph- now in its second revised and extended edition- provides a thorough treatment of module theory, a subfield of algebra. The authors develop an approximation theory as well as realization theorems and present some of its recent applications, notably to infinite-dimensional combinatorics and model theory. The book starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory. Rüdiger Göbel, University of Duisburg-Essen, Germany; Jan Trlifaj, Charles University in Prague, Czech Republic.
    Anmerkung: Description based upon print version of record , CONTENTS; Volume 1; Introduction; List of Symbols; PART I: SOME USEFUL CLASSES OF MODULES; 1 S-completions; 1.1 Support of elements in B - a first step; 1.2 Uncountable S incompletions; 1.3 Modules of cardinality ˂ 2 ℵ0; 2 Pure-injective modules; 2.1 Direct limits, finitely presented modules and pure submodules; 2.2 Characterizations of pure-injective modules; 3 Mittag-Leffler modules; 3.1 Characterizations of Mittag-Leffler modules; 3.2 Flat Mittag-Leffler modules; 3.3 Unions of countable pure chains of pure-projective modules; 3.4 Locally projective modules; 3.5 Open problems , 4 Slender modules4.1 Factors of products and slender modules; 4.2 Slender modules over Dedekind domains; 4.3 Open problems; PART II: APPROXIMATIONS AND COTORSION PAIRS; 5 Approximations of modules; 5.1 Preenvelopes and precovers; 5.2 Cotorsion pairs and Tor-pairs; 5.3 Minimal approximations; 5.4 Open problems; 6 Complete cotorsion pairs; 6.1 Ext and direct limits; 6.2 The abundance of complete cotorsion pairs; 6.3 Ext and inverse limits; 6.4 Open problems; 7 Hill lemma and its applications; 7.1 The general version of the Hill Lemma; 7.2 Kaplansky theorem for cotorsion pairs , 7.3 C-socle sequences and Filt.(C)-precovers7.4 Singular compactness for C-filtered modules; 7.5 Ascending and descending properties of modules; 7.6 The rank version of the Hill Lemma; 7.7 Matlis cotorsion and strongly flat modules; 7.8 Open problems; 8 Deconstruction of the roots of Ext; 8.1 Approximations by modules of finite homological dimensions; 8.2 Closure properties providing for deconstruction; 8.3 The closure of a cotorsion pair; 9 Modules of projective dimension one; 9.1 Structure of P 1 and WI for semiprime Goldie rings; 9.2 The class lim P 1; 9.3 Open problems , 10 Kaplansky classes and abstract elementary classes10.1 Kaplansky classes and deconstructibility; 10.2 Flat Mittag-Leffler modules revisited; 10.3 Abstract elementary classes of the roots of Ext; 10.4 Open problems; 11 Independence results for cotorsion pairs; 11.1 Completeness of cotorsion pairs under the Diamond Principle; 11.2 Uniformisation and cotorsion pairs not generated by a set; 11.3 Open problems; 12 The lattice of cotorsion pairs; 12.1 Ultra-cotorsion-free modules and the Strong Black Box; 12.2 Rational cotorsion pairs; 12.3 Embedding posets into the lattice of cotorsion pairs , PART III: TILTING AND COTILTING APPROXIMATIONS13 Tilting approximations; 13.1 Tilting modules; 13.2 Classes of finite type; 13.3 Localisation of tilting modules; 13.4 Product-completeness of tilting modules; 13.5 Open problems; 14 1-tilting modules and their applications; 14.1 Tilting torsion classes; 14.2 The structure of 1-tilting modules and classes over particular rings; 14.3 Baer modules; 14.4 Matlis localisations; 14.5 Open problems; 15 Cotilting classes; 15.1 Cotilting classes and the classes of cofinite type; 15.2 1-cotilting modules and cotilting torsion-free classes , 15.3 Cotilting over Prüfer domains , In English
    Weitere Ausg.: ISBN 9783110218107
    Weitere Ausg.: ISBN 3110218100
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Göbel, Rüdiger Approximations and endomorphism algebras of modules Berlin [u.a.] : de Gruyter, 2012 ISBN 9783110218107
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    RVK:
    Schlagwort(e): Assoziativer Ring ; Modul ; Approximation ; Assoziativer Ring ; Modul ; Approximation ; Electronic books
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Cover
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    Berlin [u.a.] : De Gruyter
    Dazugehörige Titel
    UID:
    kobvindex_ZLB15539211
    Umfang: 25 cm
    ISBN: 9783110218107 , 3110218100
    Serie: De Gruyter expositions in mathematics 41
    Anmerkung: Früher begrenztes Werk. - Literaturangaben
    Sprache: Englisch
    Schlagwort(e): Assoziativer Ring ; Modul ; Approximation
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    gbv_67976450X
    ISBN: 9783110218107
    Serie: De Gruyter expositions in mathematics 41
    Anmerkung: 2-bändige Ausg. - 1. Aufl. einbändig erschienen
    Weitere Ausg.: ISBN 9783110218114
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Berlin ; : De Gruyter,
    UID:
    almahu_9948316301402882
    Umfang: 2 v. in 1 (xxviii, 972 p.) : , ill.
    Ausgabe: 2nd rev. and extended ed.
    Ausgabe: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Serie: De Gruyter expositions in mathematics, 41
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    almafu_9958353708002883
    Umfang: 1 online resource (1024p.)
    Ausgabe: 2nd rev. and exp. ed.
    ISBN: 9783110218114
    Serie: De Gruyter Expositions in Mathematics ; 41
    Inhalt: This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.
    Anmerkung: Frontmatter -- , Contents -- , Introduction -- , List of Symbols -- , Part I. Some useful classes of modules -- , Chapter 1. S-completions -- , Chapter 2. Pure-injective modules -- , Chapter 3. Mittag-Leffler modules -- , Chapter 4. Slender modules -- , Part II. Approximations and cotorsion pairs -- , Chapter 5. Approximations of modules -- , Chapter 6. Complete cotorsion pairs -- , Chapter 7. Hill lemma and its applications -- , Chapter 8. Deconstruction of the roots of Ext -- , Chapter 9. Modules of projective dimension one -- , Chapter 10. Kaplansky classes and abstract elementary classes -- , Chapter 11. Independence results for cotorsion pairs -- , Chapter 12. The lattice of cotorsion pairs -- , Part III. Tilting and cotilting approximations -- , Chapter 13. Tilting approximations -- , Chapter 14. 1-tilting modules and their applications -- , Chapter 15. Cotilting classes -- , Chapter 16. Tilting and cotilting classes over commutative noetherian rings -- , Chapter 17. Tilting approximations and the finitistic dimension conjectures -- , Bibliography -- , Index -- , Part IV Prediction principles -- , Chapter 18. Survey of prediction principles using ZFC and more -- , Chapter 19. Prediction principles in ZFC: the Black Boxes and others -- , Part V. Endomorphism algebras and automorphism groups -- , Chapter 20. Realising algebras – by algebraically independent elements and by prediction principles -- , Chapter 21. Automorphism groups of torsion-free abelian groups -- , Chapter 22. Modules with distinguished submodules -- , Chapter 23. R-modules and fields from modules with distinguished submodules -- , Chapter 24 Endomorphism algebras of אn-free modules -- , Part VI. Modules and rings related to algebraic topology -- , Chapter 25. Localisations and cellular covers, the general theory for R-modules -- , Chapter 26. Tame and wild localisations of size ≤ 2 ℵ0 -- , Chapter 27. Tame cellular covers -- , Chapter 28. Wild cellular covers -- , Chapter 29. Absolute E-rings -- , Part VII. Cellular covers, localisations and E(R)-algebras -- , Chapter 30. Large kernels of cellular covers and large localisations -- , Chapter 31. Mixed E(R)-modules over Dedekind domains -- , Chapter 32. E(R)-modules with cotorsion -- , Chapter 33. Generalised E(R)-algebras -- , Chapter 34. Some more useful classes of algebras -- , Bibliography -- , Index , In English.
    Weitere Ausg.: ISBN 978-3-11-021810-7
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Berlin [u.a.] : de Gruyter
    UID:
    b3kat_BV041278923
    Umfang: 1 Online-Ressource
    Ausgabe: 2., rev. and extended ed.
    ISBN: 9783110218114 , 9783110218107 , 9783111733203
    Serie: de Gruyter expositions in mathematics 41
    Anmerkung: Enth. Bd. 1 und 2 der Printausg. von 2012: Approximations. Predictions
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Assoziativer Ring ; Modul ; Approximation
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783110208207?
Meinten Sie 9783110119107?
Meinten Sie 9783110205107?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz