Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Berlin ; : De Gruyter,
    UID:
    almahu_9947548581202882
    Umfang: 1 online resource (332 p.)
    ISBN: 9783110263343 , 9783110494938
    Serie: De Gruyter Studies in Mathematics, 45
    Inhalt: Most classes of operators that are not isomorphic embeddings are characterized by some kind of a “smallness” condition. Narrow operators are those operators defined on function spaces that are “small” at {-1,0,1}-valued functions, e.g. compact operators are narrow. The original motivation to consider such operators came from theory of embeddings of Banach spaces, but since then they were also applied to the study of the Daugavet property and to other geometrical problems of functional analysis. The question of when a sum of two narrow operators is narrow, has led to deep developments of the theory of narrow operators, including an extension of the notion to vector lattices and investigations of connections to regular operators. Narrow operators were a subject of numerous investigations during the last 30 years. This monograph provides a comprehensive presentation putting them in context of modern theory. It gives an in depth systematic exposition of concepts related to and influenced by narrow operators, starting from basic results and building up to most recent developments. The authors include a complete bibliography and many attractive open problems.
    Anmerkung: Frontmatter -- , Preface -- , Contents -- , Chapter 1. Introduction and preliminaries -- , Chapter 2. Each “small” operator is narrow -- , Chapter 3. Some properties of narrow operators with applications to nonlocally convex spaces -- , Chapter 4. Noncompact narrow operators -- , Chapter 5. Ideal properties, conjugates, spectrum and numerical radii of narrow operators -- , Chapter 6. Daugavet-type properties of Lebesgue and Lorentz spaces -- , Chapter 7. Strict singularity versus narrowness -- , Chapter 8. Weak embeddings of L1 -- , Chapter 9. Spaces X for which every operator T ∈ ℒ (Lp;X) is narrow -- , Chapter 10. Narrow operators on vector lattices -- , Chapter 11. Some variants of the notion of narrow operators -- , Chapter 12. Open problems -- , Bibliography -- , Index of names -- , Subject index , Mode of access: Internet via World Wide Web. , In English.
    In: DG Studies in Mathematics Backlist eBook Package, De Gruyter, 9783110494938
    In: E-BOOK GESAMTPAKET / COMPLETE PACKAGE 2012, De Gruyter, 9783110288995
    In: E-BOOK PACKAGE MATHEMATICS, PHYSICS, ENGINEERING 2012, De Gruyter, 9783110293722
    In: E-BOOK PAKET MATHEMATIK, PHYSIK, INGENIEURWISS. 2012, De Gruyter, 9783110288926
    Weitere Ausg.: ISBN 9783110263039
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    URL: Cover
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_72150261X
    Umfang: XIII, 319 S. , 245 mm x 175 mm
    ISBN: 3110263033 , 9783110263039
    Serie: De Gruyter studies in mathematics 45
    Anmerkung: Literaturverz. S. [307] - 314
    Weitere Ausg.: ISBN 9783110263343
    Weitere Ausg.: Online-Ausg. Popov, Mykhaĭlo Mykhaĭlovych Narrow operators on function spaces and vector lattices Berlin : De Gruyter, 2013 ISBN 9783110263343
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Popov, Mikhail, 1981 - Narrow operators on function spaces and vector lattices Berlin : De Gruyter, 2013 ISBN 9783110263343
    Weitere Ausg.: ISBN 3110263343
    Weitere Ausg.: ISBN 3110263343
    Weitere Ausg.: ISBN 3110263033
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Operator ; Funktionenraum ; Vektorverband ; Operator ; Funktionenraum ; Vektorverband ; Bibliografie
    Mehr zum Autor: Popov, Mikhail 1981-
    Mehr zum Autor: Popov, Mychajlo M.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almafu_BV040604348
    Umfang: XIII, 319 S.
    ISBN: 3-11-026303-3 , 978-3-11-026303-9
    Serie: De Gruyter studies in mathematics 45
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-11-026334-3
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Operator ; Funktionenraum ; Vektorverband
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Berlin [u.a.] : de Gruyter
    UID:
    b3kat_BV040762202
    Umfang: 1 Online-Ressource
    ISBN: 9783110263343 , 9783110263039
    Serie: De Gruyter studies in mathematics 45
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-11-026303-9
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Operator ; Funktionenraum ; Vektorverband ; Electronic books
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Cover
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    gbv_1655797700
    Umfang: 1 Online-Ressource (XIII, 319 Seiten)
    ISBN: 9783110263343 , 3110263343 , 3110263343 , 3110263033
    Serie: De Gruyter Studies in Mathematics 45
    Inhalt: Narrow operators are those operators defined on function spaces which are "small'' at signs, i.e. at {-1,0,1}-valued functions. Numerous works and research papers exist on these, but no coherent monograph yet to place them in context. This book gives comprehensive treatment of narrow operators. It starts with basics and then systematically builds up the case. It also covers geometrical applications and Gaussian embeddings. Mikhail Popov, Chernivtsi National University, Ukraine; Miami University, Oxford, USA; Beata Randrianantoanina, Miami University, Oxford, USA.
    Inhalt: Most classes of operators that are not isomorphic embeddings are characterized by some kind of a “smallness” condition. Narrow operators are those operators defined on function spaces that are “small” at {-1,0,1}-valued functions, e.g. compact operators are narrow. The original motivation to consider such operators came from theory of embeddings of Banach spaces, but since then they were also applied to the study of the Daugavet property and to other geometrical problems of functional analysis. The question of when a sum of two narrow operators is narrow, has led to deep developments of the theory of narrow operators, including an extension of the notion to vector lattices and investigations of connections to regular operators. Narrow operators were a subject of numerous investigations during the last 30 years. This monograph provides a comprehensive presentation putting them in context of modern theory. It gives an in depth systematic exposition of concepts related to and influenced by narrow operators, starting from basic results and building up to most recent developments. The authors include a complete bibliography and many attractive open problems.
    Anmerkung: Description based upon print version of record , Preface; 1 Introduction and preliminaries; 1.1 Background information; 1.2 Terminology and notation; 1.3 Narrow operators on function spaces; 1.4 Homogeneous measure spaces and Maharam's theorem; 1.5 Necessary information on vector lattices; 1.6 Kalton's and Rosenthal's representation theorems for operators on L1; 2 Each "small" operator is narrow; 2.1 AM-compact and Dunford-Pettis operators are narrow; 2.2 "Large" subspaces are exactly strictly rich; 2.3 Operators with "small" ranges are narrow; 2.4 Narrow operators are compact on a suitable subspace , 3 Applications to nonlocally convex spaces3.1 Nonexistence of nonzero narrow operators; 3.2 The separable quotient space problem; 3.3 Isomorphic classification of strongly nonconvex Köthe F-spaces; 4 Noncompact narrow operators; 4.1 Conditional expectation operators; 4.2 A narrow projection from E onto a subspace isometric to E; 4.3 A characterization of narrow conditional expectations; 5 Ideal properties, conjugates, spectrum and numerical radii; 5.1 Ideal properties of narrow operators and stability of rich subspaces; 5.2 Conjugates of narrow operators need not be narrow , 7.3 Johnson-Maurey-Schechtman-Tzafriri's theorem7.4 An application to almost isometric copies of L1; 7.5 An application to complemented subspaces of Lp; 7.6 The Daugavet property for rich subspaces of L1; 8 Weak embeddings of L1; 8.1 Definitions; 8.2 Embeddability of L1; 8.3 Examples; 8.4 Gδ -embeddings of L1 are not narrow; 8.5 Sign-embeddability of L1 does not imply isomorphic embeddability; 9 Spaces X for which every operator T∊ L(Lp,X) is narrow; 9.1 A characterization using the ranges of vector measures; 9.2 Every operator from E to c0(Γ) is narrow , 9.3 An analog of the Pitt compactness theorem for Lp-spaces9.4 When is every operator from Lp to lr narrow?; 9.5 l2-strictly singular operators on Lp; 10 Narrow operators on vector lattices; 10.1 Two definitions of a narrow operator on vector lattices; 10.2 AM-compact order-to-norm continuous operators are narrow; 10.3 T is narrow if and only if |T | is narrow; 10.4 The Enflo-Starbird function and λ-narrow operators; 10.5 Classical theorems; 10.6 Pseudonarrow operators are exactly λ-narrow operators; 10.7 Regular narrow operators form a band in the lattice of regular operators , 10.8 Narrow operators on lattice-normed spaces , 5.3 Spectrum of a narrow operator5.4 Numerical radii of narrow operators on Lp (µ)-spaces; 6 Daugavet-type properties of Lebesgue and Lorentz spaces; 6.1 A generalization of the DP for L1 to "small" into isomorphisms; 6.2 Pseudo-Daugavet property for narrow operators on Lp, p ≠ 2; 6.3 A pseudo-Daugavet property for narrow projections in Lorentz spaces; 6.4 Near isometric classification of Lp (µ)-spaces for 1 ≤ p〈∞, p ≠ 2; 7 Strict singularity versus narrowness; 7.1 Bourgain-Rosenthal's theorem on l1 -strictly singular operators; 7.2 Rosenthal's characterization of narrow operators on L1 , In English
    Weitere Ausg.: ISBN 9783110263039
    Weitere Ausg.: ISBN 3110263033
    Weitere Ausg.: ISBN 3110263033
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Popov, Mikhail, 1981 - Narrow operators on function spaces and vector lattices Berlin [u.a.] : De Gruyter, 2013 ISBN 3110263033
    Weitere Ausg.: ISBN 9783110263039
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Operator ; Funktionenraum ; Vektorverband ; Operator ; Funktionenraum ; Vektorverband ; Electronic books
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Cover
    URL: Cover
    Mehr zum Autor: Popov, Mikhail 1981-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    almahu_9948316301902882
    Umfang: xiii, 319 p.
    Ausgabe: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Serie: De Gruyter studies in mathematics,
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783110203059?
Meinten Sie 9783110203639?
Meinten Sie 9783100363039?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz