Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Zugriff
  • 1
    Buch
    Buch
    Cham [u.a.] :Springer,
    UID:
    almahu_BV042260580
    Umfang: X, 289 S. : , graph. Darst.
    Ausgabe: 3. ed.
    ISBN: 978-3-319-12492-6
    Serie: Undergraduate texts in mathematics
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-319-12493-3
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Partielle Differentialgleichung ; Lehrbuch ; Lehrbuch ; Lehrbuch
    Mehr zum Autor: Logan, J. David, 1944-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham [u.a.] : Springer
    UID:
    b3kat_BV042276761
    Umfang: 1 Online-Ressource
    Ausgabe: 3. ed.
    ISBN: 9783319124926 , 9783319124933
    Serie: Undergraduate texts in mathematics
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Partielle Differentialgleichung ; Lehrbuch
    Mehr zum Autor: Logan, J. David 1944-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham [u.a.] : Springer
    UID:
    gbv_1654554278
    Umfang: Online-Ressource (XI, 289 p. 49 illus., 6 illus. in color, online resource)
    Ausgabe: 3rd ed. 2015
    ISBN: 9783319124933
    Serie: Undergraduate Texts in Mathematics
    Inhalt: This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked examples have been added to this edition. Prerequisites include calculus and ordinary differential equations. A student who reads this book and works many of the exercises will have a sound knowledge for a second course in partial differential equations or for courses in advanced engineering and science. Two additional chapters include short introductions to applications of PDEs in biology and a new chapter to the computation of solutions. A brief appendix reviews techniques from ordinary differential equations. From the reviews of the second edition: “This second edition of the short undergraduate text provides a fist course in PDE aimed at students in mathematics, engineering and the sciences. The material is standard … Strong emphasis is put on modeling and applications throughout; the main text is supplied with many examples and exercises.” -R. Steinbauer, Monatshefte für Mathematik, Vol. 150 (4), 2007 “This is a unique book in the sense that it provides a coverage of the main topics of the subject in a concise style which is accessible to science and engineering students. … Reading this book and solving the problems, the students will have a solid base for a course in partial differential equations … .” -Tibor Krisztin, Acta Scientiarum Mathematicarum, Vol. 74, 2008
    Anmerkung: Preface to the Third EditionTo the Students -- 1: The Physical Origins of Partial Differential Equations -- 1.1 PDE Models -- 1.2 Conservation Laws -- 1.3 Diffusion -- 1.4 Diffusion and Randomness -- 1.5 Vibrations and Acoustics -- 1.6 Quantum Mechanics* -- 1.7 Heat Conduction in Higher Dimensions -- 1.8 Laplace’s Equation -- 1.9 Classification of PDEs -- 2. Partial Differential Equations on Unbounded Domains -- 2.1 Cauchy Problem for the Heat Equation -- 2.2 Cauchy Problem for the Wave Equation -- 2.3 Well-Posed Problems -- 2.4 Semi-Infinite Domains -- 2.5 Sources and Duhamel’s Principle -- 2.6 Laplace Transforms -- 2.7 Fourier Transforms -- 3. Orthogonal Expansions -- 3.1 The Fourier Method -- 3.2 Orthogonal Expansions -- 3.3 Classical Fourier Series.-4. Partial Differential Equations on Bounded Domains -- 4.1 Overview of Separation of Variables -- 4.2 Sturm-Liouville Problems - 4.3 Generalization and Singular Problems -- 4.4 Laplace's Equation -- 4.5 Cooling of a Sphere -- 4.6 Diffusion inb a Disk -- 4.7 Sources on Bounded Domains -- 4.8 Poisson's Equation*.-5. Applications in the Life Sciences.-5.1 Age-Structured Models -- 5.2 Traveling Waves Fronts -- 5.3 Equilibria and Stability -- References -- Appendix A. Ordinary Differential Equations -- Index.
    Weitere Ausg.: ISBN 9783319124926
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Logan, J. David, 1944 - Applied partial differential equations Cham : Springer, 2015 ISBN 9783319124926
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Partielle Differentialgleichung
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783319120393?
Meinten Sie 9783319108933?
Meinten Sie 9783319111933?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz