Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Person/Organisation
Subjects(RVK)
  • 1
    UID:
    almahu_BV040993767
    Format: XXVIII, 251 S. : , Ill., graph. Darst., Kt.
    ISBN: 3-527-41027-9 , 978-3-527-41027-9 , 978-3-527-65205-1
    Additional Edition: Erscheint auch als Online-Ausgabe, EPUB ISBN 978-3-527-65207-5
    Additional Edition: Erscheint auch als Online-Ausgabe, MOBI ISBN 978-3-527-65206-8
    Additional Edition: Erscheint auch als Online-Ausgabe, PDF ISBN 978-3-527-65208-2
    Language: English
    Subjects: Physics
    RVK:
    Keywords: Magnetosphäre ; Magnetometer
    Author information: Waters, Colin L.
    Author information: Menk, Frederick W.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hoboken :Wiley,
    UID:
    almafu_9959359207502883
    Format: 1 online resource (281 pages)
    ISBN: 9783527652082 , 3527652086
    Content: This book provides a comprehensive account of magnetoseismology - the tool to monitor space weather. Written by researcher on the forefront of this field, it conveys the physics behind the phenomena and the methods to detect and investigate them, the relevance to communication, power supply and many other critical systems. In addition, it provides computational codes for analysis and evaluation.
    Note: 8.6 Remote Sensing ULF Electric Fields in Space. , Magnetoseismology: Ground-based remote sensing of the Earth's magnetosphere; Contents; Preface; Color Plates; 1 Introduction; 1.1 Purpose of This Book; 1.2 The Solar Wind; 1.3 Fluctuations in the Solar Wind; 1.4 Early Observations of Geomagnetic Variations; 1.5 Properties of Geomagnetic Variations; 2 The Magnetosphere and Ionosphere; 2.1 The Geomagnetic Field; 2.2 Structure of Earth's Magnetosphere; 2.3 Magnetospheric Current Systems; 2.3.1 Magnetopause Current; 2.3.2 Tail Current and Reconnection; 2.3.3 Ring Current; 2.3.4 Field-Aligned Currents; 2.3.5 Ionospheric Currents. , 2.4 The Radiation Belts2.5 The Inner Magnetosphere; 2.6 Formation and Properties of the Ionosphere; 2.7 Geomagnetic Disturbances; 2.8 Space Weather Effects; 3 ULF Plasma Waves in the Magnetosphere; 3.1 Basic Properties of a Plasma; 3.2 Particle Motions; 3.2.1 Motions of Isolated Charged Particles; 3.2.2 First Adiabatic Invariant; 3.2.3 Second Adiabatic Invariant; 3.2.4 Third Adiabatic Invariant; 3.3 Low-Frequency Magnetized Plasma Waves; 3.3.1 Equations of Linear MHD; 3.3.2 The Wave Equation; 3.4 The Shear Alfv en Mode in a Dipole Magnetic Field; 3.4.1 Toroidal Oscillation of Field Lines. , 3.5 MHD Wave Mode Coupling in One Dimension3.6 An Alternative Derivation of the Plasma Wave Equation, from Electromagnetism; 4 Sources of ULF Waves; 4.1 Introduction; 4.2 Exogenic Sources; 4.3 Boundary Instabilities; 4.4 Field Line Resonances; 4.5 Cavity and Waveguide Modes; 4.6 Spatially Localized Waves; 4.7 Ion Cyclotron Waves; 5 Techniques for Detecting Field Line Resonances; 5.1 Introduction; 5.2 Variation in Spectral Power with Latitude; 5.3 Variation of Phase with Latitude; 5.4 Wave Polarization Properties; 5.5 Spectral Power Difference and Division; 5.6 Single Station H/D. , 5.7 Cross-Phase from Latitudinally Separated Sensors5.8 Using ULF Wave Polarization Properties; 5.9 Automated Detection Algorithms; 6 Ground-Based Remote Sensing of the Magnetosphere; 6.1 Estimating Plasma Mass Density; 6.2 Travel Time Method of Tamao; 6.3 Determining Electron Density; 6.4 Verification of Ground-Based Mass Density Measurements; 6.5 Determining Ion Concentrations; 6.6 Field-Aligned Plasma Density; 6.7 Plasma Density at Low Latitudes; 6.8 Plasma Density at High Latitudes; 7 Space Weather Applications; 7.1 Magnetospheric Structure and Density; 7.2 Plasmapause Dynamics. , 7.3 Density Notches, Plumes, and Related Features7.4 Refilling of the Plasmasphere; 7.5 Longitudinal Variation in Density; 7.6 Solar Cycle Variations in Density; 7.7 Determining the Open/Closed Field Line Boundary; 7.8 Determining the Magnetospheric Topology at High Latitudes; 7.9 Wave-Particle Interactions; 7.10 Radial Motions of Flux Tubes; 8 ULF Waves in the Ionosphere; 8.1 Introduction; 8.2 Electrostatic and Inductive Ionospheres; 8.3 ULF Wave Solution for a Thin Sheet Ionosphere; 8.4 ULF Wave Solution for a Realistic Ionosphere; 8.5 FLRs and the Ionosphere.
    Additional Edition: Print version: Menk, Frederick W. Magnetoseismology. Hoboken : Wiley, ©2013 ISBN 9783527410279
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Hoboken :Wiley,
    UID:
    almahu_9948368320602882
    Format: 1 online resource (281 pages)
    ISBN: 9783527652082 , 3527652086
    Content: This book provides a comprehensive account of magnetoseismology - the tool to monitor space weather. Written by researcher on the forefront of this field, it conveys the physics behind the phenomena and the methods to detect and investigate them, the relevance to communication, power supply and many other critical systems. In addition, it provides computational codes for analysis and evaluation.
    Note: 8.6 Remote Sensing ULF Electric Fields in Space. , Magnetoseismology: Ground-based remote sensing of the Earth's magnetosphere; Contents; Preface; Color Plates; 1 Introduction; 1.1 Purpose of This Book; 1.2 The Solar Wind; 1.3 Fluctuations in the Solar Wind; 1.4 Early Observations of Geomagnetic Variations; 1.5 Properties of Geomagnetic Variations; 2 The Magnetosphere and Ionosphere; 2.1 The Geomagnetic Field; 2.2 Structure of Earth's Magnetosphere; 2.3 Magnetospheric Current Systems; 2.3.1 Magnetopause Current; 2.3.2 Tail Current and Reconnection; 2.3.3 Ring Current; 2.3.4 Field-Aligned Currents; 2.3.5 Ionospheric Currents. , 2.4 The Radiation Belts2.5 The Inner Magnetosphere; 2.6 Formation and Properties of the Ionosphere; 2.7 Geomagnetic Disturbances; 2.8 Space Weather Effects; 3 ULF Plasma Waves in the Magnetosphere; 3.1 Basic Properties of a Plasma; 3.2 Particle Motions; 3.2.1 Motions of Isolated Charged Particles; 3.2.2 First Adiabatic Invariant; 3.2.3 Second Adiabatic Invariant; 3.2.4 Third Adiabatic Invariant; 3.3 Low-Frequency Magnetized Plasma Waves; 3.3.1 Equations of Linear MHD; 3.3.2 The Wave Equation; 3.4 The Shear Alfv en Mode in a Dipole Magnetic Field; 3.4.1 Toroidal Oscillation of Field Lines. , 3.5 MHD Wave Mode Coupling in One Dimension3.6 An Alternative Derivation of the Plasma Wave Equation, from Electromagnetism; 4 Sources of ULF Waves; 4.1 Introduction; 4.2 Exogenic Sources; 4.3 Boundary Instabilities; 4.4 Field Line Resonances; 4.5 Cavity and Waveguide Modes; 4.6 Spatially Localized Waves; 4.7 Ion Cyclotron Waves; 5 Techniques for Detecting Field Line Resonances; 5.1 Introduction; 5.2 Variation in Spectral Power with Latitude; 5.3 Variation of Phase with Latitude; 5.4 Wave Polarization Properties; 5.5 Spectral Power Difference and Division; 5.6 Single Station H/D. , 5.7 Cross-Phase from Latitudinally Separated Sensors5.8 Using ULF Wave Polarization Properties; 5.9 Automated Detection Algorithms; 6 Ground-Based Remote Sensing of the Magnetosphere; 6.1 Estimating Plasma Mass Density; 6.2 Travel Time Method of Tamao; 6.3 Determining Electron Density; 6.4 Verification of Ground-Based Mass Density Measurements; 6.5 Determining Ion Concentrations; 6.6 Field-Aligned Plasma Density; 6.7 Plasma Density at Low Latitudes; 6.8 Plasma Density at High Latitudes; 7 Space Weather Applications; 7.1 Magnetospheric Structure and Density; 7.2 Plasmapause Dynamics. , 7.3 Density Notches, Plumes, and Related Features7.4 Refilling of the Plasmasphere; 7.5 Longitudinal Variation in Density; 7.6 Solar Cycle Variations in Density; 7.7 Determining the Open/Closed Field Line Boundary; 7.8 Determining the Magnetospheric Topology at High Latitudes; 7.9 Wave-Particle Interactions; 7.10 Radial Motions of Flux Tubes; 8 ULF Waves in the Ionosphere; 8.1 Introduction; 8.2 Electrostatic and Inductive Ionospheres; 8.3 ULF Wave Solution for a Thin Sheet Ionosphere; 8.4 ULF Wave Solution for a Realistic Ionosphere; 8.5 FLRs and the Ionosphere.
    Additional Edition: Print version: Menk, Frederick W. Magnetoseismology. Hoboken : Wiley, ©2013 ISBN 9783527410279
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9783527410439?
Did you mean 9783527407279?
Did you mean 9783527410262?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages