Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    almahu_BV019645756
    Umfang: XIX, 350 S. : , Ill., graph. Darst. ; , 235 mm x 155 mm.
    ISBN: 3-540-24051-9
    Serie: Lecture Notes in Computer Science 3282
    Anmerkung: Teilw. zugl.: Cambridge, Mass., Massachusetts Institute of Technology, Diss., 2001
    Sprache: Englisch
    Schlagwort(e): Fehlerkorrekturcode ; Liste ; Decodierung ; Hochschulschrift ; Hochschulschrift
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9947364100102882
    Umfang: XX, 352 p. , online resource.
    ISBN: 9783540301806
    Serie: Lecture Notes in Computer Science, 3282
    Inhalt: How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of “error-correcting codes”. This theory has traditionally gone hand in hand with the algorithmic theory of “decoding” that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionof“list-decoding” can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or “encode”) information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2.
    Anmerkung: 1 Introduction -- 1 Introduction -- 2 Preliminaries and Monograph Structure -- I Combinatorial Bounds -- 3 Johnson-Type Bounds and Applications to List Decoding -- 4 Limits to List Decodability -- 5 List Decodability Vs. Rate -- II Code Constructions and Algorithms -- 6 Reed-Solomon and Algebraic-Geometric Codes -- 7 A Unified Framework for List Decoding of Algebraic Codes -- 8 List Decoding of Concatenated Codes -- 9 New, Expander-Based List Decodable Codes -- 10 List Decoding from Erasures -- III Applications -- Interlude -- III Applications -- 11 Linear-Time Codes for Unique Decoding -- 12 Sample Applications Outside Coding Theory -- 13 Concluding Remarks -- A GMD Decoding of Concatenated Codes.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9783540240518
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almahu_9949972471702882
    Umfang: XX, 352 p. , online resource.
    Ausgabe: 1st ed. 2005.
    ISBN: 9783540301806
    Serie: Lecture Notes in Computer Science, 3282
    Inhalt: How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of "error-correcting codes". This theory has traditionally gone hand in hand with the algorithmic theory of "decoding" that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionof"list-decoding" can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or "encode") information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2.
    Anmerkung: 1 Introduction -- 1 Introduction -- 2 Preliminaries and Monograph Structure -- I Combinatorial Bounds -- 3 Johnson-Type Bounds and Applications to List Decoding -- 4 Limits to List Decodability -- 5 List Decodability Vs. Rate -- II Code Constructions and Algorithms -- 6 Reed-Solomon and Algebraic-Geometric Codes -- 7 A Unified Framework for List Decoding of Algebraic Codes -- 8 List Decoding of Concatenated Codes -- 9 New, Expander-Based List Decodable Codes -- 10 List Decoding from Erasures -- III Applications -- Interlude -- III Applications -- 11 Linear-Time Codes for Unique Decoding -- 12 Sample Applications Outside Coding Theory -- 13 Concluding Remarks -- A GMD Decoding of Concatenated Codes.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783540240518
    Weitere Ausg.: Printed edition: ISBN 9783540805915
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783540200512?
Meinten Sie 9783540200598?
Meinten Sie 9783540211518?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz