Format:
Online-Ressource
Edition:
Springer eBook Collection. Physics and Astronomy
ISBN:
9783540458050
Series Statement:
Springer Tracts in Modern Physics 180
Content:
Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new and fascinating perspective of order down to the atomic level. The authors develop concepts related to quasiperiodic coverings and describe results. Specific systems in 2 and 3 dimensions are described with many illustrations. The atomic positions in quasicrystals are analyzed
Note:
Covering of discrete quasiperiodic sets (Kramer) -- Atomic clusters and covering in icosahedral quasicrystals (Duneau, Gratias) -- Generation of quasiperiodic order by maximal cluster covering (Gähler, Gummelt, Ben-Abraham) -- Ammann grid decorations of covering clusters in quasiperiodic tilings (Lück, Scheffer) -- Voronoi and Delone clusters in dual quasiperiodic tilings (Kramer) -- The efficiency of the Delone-coverings of canonical tilings (Papadopolos, Kasner) -- Covering presentation and colouring of dual canonical tilings (Kramer, Papadopolos, Kasner) -- Lines and planes in 2 and 3 dimensional quasicrystals (Pleasants) -- Thermally induced tile rearrangements in decagonal quasicrystals - superlattice ordering and phason fluctuations (Edagawa) -- Experimentally derived tilings of quasicrystal surfaces (McGrath, Diehl, Ledieu).
Additional Edition:
ISBN 9783540432418
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 9783642077494
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 9783540432418
Additional Edition:
Erscheint auch als Druck-Ausgabe ISBN 9783662146262
Language:
English
Keywords:
Quasikristall
;
Punktmenge
;
Quasiperiodizität
;
Überdeckung
DOI:
10.1007/3-540-45805-0
URL:
Volltext
(lizenzpflichtig)
Bookmarklink