Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    b3kat_BV035826360
    Umfang: 1 Online-Ressource (XI, 399 S.)
    ISBN: 9783642044144
    Serie: Lecture Notes in Computer Science 5809 : Lecture Notes in Artificial Intelligence
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-3-642-04413-7
    Sprache: Englisch
    Schlagwort(e): Algorithmische Lerntheorie ; Konferenzschrift ; Konferenzschrift
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9947364148202882
    Umfang: XI, 399 p. , online resource.
    ISBN: 9783642044144
    Serie: Lecture Notes in Computer Science, 5809
    Inhalt: This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.
    Anmerkung: Invited Papers -- The Two Faces of Active Learning -- Inference and Learning in Planning -- Mining Heterogeneous Information Networks by Exploring the Power of Links -- Learning and Domain Adaptation -- Learning on the Web -- Regular Contributions -- Prediction with Expert Evaluators’ Advice -- Pure Exploration in Multi-armed Bandits Problems -- The Follow Perturbed Leader Algorithm Protected from Unbounded One-Step Losses -- Computable Bayesian Compression for Uniformly Discretizable Statistical Models -- Calibration and Internal No-Regret with Random Signals -- St. Petersburg Portfolio Games -- Reconstructing Weighted Graphs with Minimal Query Complexity -- Learning Unknown Graphs -- Completing Networks Using Observed Data -- Average-Case Active Learning with Costs -- Canonical Horn Representations and Query Learning -- Learning Finite Automata Using Label Queries -- Characterizing Statistical Query Learning: Simplified Notions and Proofs -- An Algebraic Perspective on Boolean Function Learning -- Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm -- Complexity versus Agreement for Many Views -- Error-Correcting Tournaments -- Difficulties in Forcing Fairness of Polynomial Time Inductive Inference -- Learning Mildly Context-Sensitive Languages with Multidimensional Substitutability from Positive Data -- Uncountable Automatic Classes and Learning -- Iterative Learning from Texts and Counterexamples Using Additional Information -- Incremental Learning with Ordinal Bounded Example Memory -- Learning from Streams -- Smart PAC-Learners -- Approximation Algorithms for Tensor Clustering -- Agnostic Clustering.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9783642044137
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almahu_9949972612202882
    Umfang: XI, 399 p. , online resource.
    Ausgabe: 1st ed. 2009.
    ISBN: 9783642044144
    Serie: Lecture Notes in Artificial Intelligence, 5809
    Inhalt: This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.
    Anmerkung: Invited Papers -- The Two Faces of Active Learning -- Inference and Learning in Planning -- Mining Heterogeneous Information Networks by Exploring the Power of Links -- Learning and Domain Adaptation -- Learning on the Web -- Regular Contributions -- Prediction with Expert Evaluators' Advice -- Pure Exploration in Multi-armed Bandits Problems -- The Follow Perturbed Leader Algorithm Protected from Unbounded One-Step Losses -- Computable Bayesian Compression for Uniformly Discretizable Statistical Models -- Calibration and Internal No-Regret with Random Signals -- St. Petersburg Portfolio Games -- Reconstructing Weighted Graphs with Minimal Query Complexity -- Learning Unknown Graphs -- Completing Networks Using Observed Data -- Average-Case Active Learning with Costs -- Canonical Horn Representations and Query Learning -- Learning Finite Automata Using Label Queries -- Characterizing Statistical Query Learning: Simplified Notions and Proofs -- An Algebraic Perspective on Boolean Function Learning -- Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm -- Complexity versus Agreement for Many Views -- Error-Correcting Tournaments -- Difficulties in Forcing Fairness of Polynomial Time Inductive Inference -- Learning Mildly Context-Sensitive Languages with Multidimensional Substitutability from Positive Data -- Uncountable Automatic Classes and Learning -- Iterative Learning from Texts and Counterexamples Using Additional Information -- Incremental Learning with Ordinal Bounded Example Memory -- Learning from Streams -- Smart PAC-Learners -- Approximation Algorithms for Tensor Clustering -- Agnostic Clustering.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783642044137
    Weitere Ausg.: Printed edition: ISBN 9783642044151
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    gbv_1648484743
    Umfang: Online-Ressource (digital)
    ISBN: 9783642044144
    Serie: Lecture Notes in Computer Science 5809
    Inhalt: Invited Papers -- The Two Faces of Active Learning -- Inference and Learning in Planning -- Mining Heterogeneous Information Networks by Exploring the Power of Links -- Learning and Domain Adaptation -- Learning on the Web -- Regular Contributions -- Prediction with Expert Evaluators’ Advice -- Pure Exploration in Multi-armed Bandits Problems -- The Follow Perturbed Leader Algorithm Protected from Unbounded One-Step Losses -- Computable Bayesian Compression for Uniformly Discretizable Statistical Models -- Calibration and Internal No-Regret with Random Signals -- St. Petersburg Portfolio Games -- Reconstructing Weighted Graphs with Minimal Query Complexity -- Learning Unknown Graphs -- Completing Networks Using Observed Data -- Average-Case Active Learning with Costs -- Canonical Horn Representations and Query Learning -- Learning Finite Automata Using Label Queries -- Characterizing Statistical Query Learning: Simplified Notions and Proofs -- An Algebraic Perspective on Boolean Function Learning -- Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm -- Complexity versus Agreement for Many Views -- Error-Correcting Tournaments -- Difficulties in Forcing Fairness of Polynomial Time Inductive Inference -- Learning Mildly Context-Sensitive Languages with Multidimensional Substitutability from Positive Data -- Uncountable Automatic Classes and Learning -- Iterative Learning from Texts and Counterexamples Using Additional Information -- Incremental Learning with Ordinal Bounded Example Memory -- Learning from Streams -- Smart PAC-Learners -- Approximation Algorithms for Tensor Clustering -- Agnostic Clustering.
    Inhalt: This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.
    Weitere Ausg.: ISBN 9783642044137
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Algorithmic learning theory Berlin : Springer, 2009 ISBN 3642044131
    Weitere Ausg.: ISBN 9783642044137
    Sprache: Englisch
    Schlagwort(e): Algorithmische Lerntheorie ; Konferenzschrift
    URL: Volltext  (lizenzpflichtig)
    Mehr zum Autor: Lugosi, Gábor 1964-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783642004544?
Meinten Sie 9783642014444?
Meinten Sie 9783462046144?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz