Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    almahu_9947363283102882
    Umfang: VII, 144 p. , online resource.
    ISBN: 9783662090701
    Serie: Springer Monographs in Mathematics,
    Inhalt: In this book the seminal 1970 Moscow thesis of Grigoriy A. Margulis is published for the first time. Entitled "On Some Aspects of the Theory of Anosov Systems", it uses ergodic theoretic techniques to study the distribution of periodic orbits of Anosov flows. The thesis introduces the "Margulis measure" and uses it to obtain a precise asymptotic formula for counting periodic orbits. This has an immediate application to counting closed geodesics on negatively curved manifolds. The thesis also contains asymptotic formulas for the number of lattice points on universal coverings of compact manifolds of negative curvature. The thesis is complemented by a survey by Richard Sharp, discussing more recent developments in the theory of periodic orbits for hyperbolic flows, including the results obtained in the light of Dolgopyat's breakthroughs on bounding transfer operators and rates of mixing.
    Anmerkung: G. Margulis: On Some Aspects of the Theory of Anosov Systems: 1. Some Preliminaries on Anosov Flows -- 2. Behaviour of Lebesgue Measures on Leaves of ~$\mathfrak{S}^{l+1}$ under the Action of Anosov Flows -- 3. Construction of Special Measures on Leaves of ~$\mathfrak{S}^{l+1}$, $\mathfrak{S}^{k+1}$, $\mathfrak{S}^l$ and ~$\mathfrak{S}^k$ -- 4. Construction of a Special Measure on Wn and the properties of the flow {Tt} with this Measure -- 5. Ergodic Properties of.~$\mathfrak{S}^k$ -- 6. Asymptotics of the Number of Periodic Trajectories -- 7. Some Asymptotical Properties of the Anosov Systems -- Appendix. References. R. Sharp: Periodic Orbits of Hyperbolic Flows: 0. Introduction -- 1. Definition and Results -- 2. Zeta Functions -- 3. Subshifts of Finite Type and Suspended Flows -- 4. Ruelle Transfer Operators -- 5. Extending Zeta Funktions -- 6. Meromorphic Extensions -- 7. Bounds on the Zeta Function and Exponential Error Terms -- 8. Polynomial Error Terms -- 9. Equidistribution Results -- 10. Finite Group Extensions -- 11. Counting with Homological Constraints -- 12. Lalley's Theorem -- 13. Lattice Point Counting -- 14. Manifolds of Non-Positive Curvature -- Appendix A: Symbolic Dynamics -- Appendix B: Livsic Theorems: Cohomology and Periodic Orbits.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9783642072642
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_1655372602
    Umfang: Online-Ressource (VII, 144 p, online resource)
    ISBN: 9783662090701
    Serie: Springer Monographs in Mathematics
    Inhalt: In this book the seminal 1970 Moscow thesis of Grigoriy A. Margulis is published for the first time. Entitled "On Some Aspects of the Theory of Anosov Systems", it uses ergodic theoretic techniques to study the distribution of periodic orbits of Anosov flows. The thesis introduces the "Margulis measure" and uses it to obtain a precise asymptotic formula for counting periodic orbits. This has an immediate application to counting closed geodesics on negatively curved manifolds. The thesis also contains asymptotic formulas for the number of lattice points on universal coverings of compact manifolds of negative curvature. The thesis is complemented by a survey by Richard Sharp, discussing more recent developments in the theory of periodic orbits for hyperbolic flows, including the results obtained in the light of Dolgopyat's breakthroughs on bounding transfer operators and rates of mixing
    Weitere Ausg.: ISBN 9783642072642
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783642072642
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783662000700?
Meinten Sie 9783662007501?
Meinten Sie 9783662020791?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz