UID:
almahu_9949697706902882
Format:
1 online resource (430 p.)
ISBN:
1-280-63099-X
,
9786610630998
,
0-08-045946-3
Series Statement:
North-Holland mathematics studies, 199
Content:
This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a
Note:
Description based upon print version of record.
,
Cover; Contents; Preface; Acknowledgements; Preliminaries; Symbols and Notations. Basic Concepts of Bitopology; Definition 0.1.1; Definition 0.1.2; Definition 0.1.3; Proposition 0.1.4; Definition 0.1.6; Proposition 0.1.7; Corollary 0.1.8; Remark 0.1.9; Definition 0.1.10; Definition 0.1.11; Proposition 0.1.12; Corollary 0.1.13; Definition 0.1.14; Proposition 0.1.15; Corollary 0.1.16; Definition 0.1.17; Definition 0.1.18; Definition 0.1.19; Definition 0.1.20; Internal Characterization of Pairwise Complete Regularity; Lemma 0.2.1; Theorem 0.2.2; Corollary 0.2.3; Definition 0.2.4; Theorem 0.2.5
,
Definition 0.2.6Lemma 0.2.7; Lemma 0.2.8; Lemma 0.2.9; Proposition 0.2.10; Different Families of Sets in Bitopological Spaces; (i, j)-Nowhere Dense Sets and (i, j)-Category Notions; Definition 1.1.1; Proposition 1.1.2; Theorem 1.1.3; Corollary 1.1.4; Corollary 1.1.5; Corollary 1.1.6; Corollary 1.1.7; Remark 1.1.8; Definition 1.1.9; Example 1.1.10; Proposition 1.1.11; Proposition 1.1.12; Corollary 1.1.13; Example 1.1.14; Corollary 1.1.15; Definition 1.1.16; Theorem 1.1.17; Definition 1.1.18; Proposition 1.1.19; Corollary 1.1.20; Definition 1.1.21; Definition 1.1.22; Remark 1.1.23
,
Theorem 1.1.24Corollary 1.1.25; Proposition 1.1.26; Corollary 1.1.27; Theorem 1.1.28; (i, j)-Locally Closed Sets; Definition 1.2.1; Theorem 1.2.2; Proposition 1.2.3; Corollary 1.2.4; Theorem 1.2.5; (i, j)-Boundaries. (i, j)-Open Domains and (i, j)-Closed Domains, (i, j)-Semiopen Sets and (i, j)-Semiclosed Sets, (i, j)-Semiopen Domains and (i, j)-Semiclosed ...; Definition 1.3.1; Theorem 1.3.2; Definition 1.3.3; Remark 1.3.4; Example 1.3.5; Theorem 1.3.6; Corollary 1.3.7; Example 1.3.8; Example 1.3.9; Proposition 1.3.10; Definition 1.3.11; Theorem 1.3.12; Corollary 1.3.13; Example 1.3.14
,
Corollary 1.3.15Proposition 1.3.16; Corollary 1.3.17; Corollary 1.3.18; Proposition 1.3.19; Remark 1.3.20; Proposition 1.3.21; Definition 1.3.22; Remark 1.3.23; Theorem 1.3.24; Proposition 1.3.25; Definition 1.3.26; Theorem 1.3.27; Corollary 1.3.28; Example 1.3.29; Corollary 1.3.30; Example 1.3.31; Corollary 1.3.32; Definition 1.3.33; Proposition 1.3.34; Sets Pairwise Dense in Themselves. (i, j)-Perfect Sets and Pairwise Scattered Sets; Definition 1.4.1; Proposition 1.4.2; Example 1.4.3; Example 1.4.4; Proposition 1.4.5; Proposition 1.4.6; Definition 1.4.7; Proposition 1.4.8; Example 1.4.9
,
Proposition 1.4.10Definition 1.4.11; Proposition 1.4.12; Remark 1.4.13; Proposition 1.4.14; Proposition 1.4.15; Proposition 1.4.16; Theorem 1.4.17; Corollary 1.4.18; Definition 1.4.19; Theorem 1.4.20; Relative Properties; Definition 1.5.1; Proposition 1.5.2; Proposition 1.5.3; Corollary 1.5.4; Proposition 1.5.5; Theorem 1.5.6; Corollary 1.5.7; Example 1.5.8; Corollary 1.5.9; Example 1.5.10; Remark 1.5.11; Example 1.5.12; Theorem 1.5.13; Corollary 1.5.14 (Main Result); Example 1.5.15; Example 1.5.16; Example 1.5.17; Proposition 1.5.18; Theorem 1.5.19; Proposition 1.5.20; Proposition 1.5.21
,
Corollary 1.5.22
,
English
Additional Edition:
ISBN 0-444-51793-6
Language:
English
Bookmarklink