Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    New Delhi [u.a.] : Springer
    UID:
    b3kat_BV040693153
    Umfang: 1 Online-Ressource
    ISBN: 9788132207627 , 9788132207634
    Serie: SpringerBriefs in statistics
    Sprache: Englisch
    Schlagwort(e): Statistische Schlussweise ; Zeitdiskretes System
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    India : Springer
    UID:
    gbv_165188627X
    Umfang: Online-Ressource (XI, 113 p, digital)
    ISBN: 9788132207634
    Serie: SpringerBriefs in Statistics
    Inhalt: CAN Estimators from dependent observations -- Markov chains and their extensions -- Non-Gaussian ARMA models -- Estimating Functions -- Estimation of joint densities and conditional expectation -- Bootstrap and other resampling procedures -- Index.
    Inhalt: This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions. It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed. Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail. This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students.
    Weitere Ausg.: ISBN 9788132207627
    Weitere Ausg.: Buchausg. u.d.T. ISBN 978-81-3220762-7
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9788132207672?
Meinten Sie 9788132207603?
Meinten Sie 9788132204657?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz