Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Person/Organisation
Subjects(RVK)
Access
  • 1
    Online Resource
    Online Resource
    New Delhi : Springer
    UID:
    b3kat_BV044023501
    Format: 1 Online-Ressource (XXVIII, 235 Seiten)
    ISBN: 9788132236672
    Series Statement: Infosys Science Foundation series
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-81-322-3665-8
    Language: English
    Subjects: Mathematics
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (lizenzpflichtig)
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    New Delhi :Springer,
    UID:
    almafu_BV044709176
    Format: XXVIII, 235 Seiten.
    ISBN: 978-81-322-3665-8
    Series Statement: Infosys Science Foundation series
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-81-322-3665-8
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-81-322-3667-2
    Language: English
    Subjects: Mathematics
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    New Delhi : Springer India
    UID:
    gbv_1656119102
    Format: Online-Ressource (XXVIII, 235 p, online resource)
    ISBN: 9788132236672
    Series Statement: Infosys Science Foundation Series
    Content: Chapter 1. Introduction -- Chapter 2. Preliminaries -- Chapter 3. Classical and Noncommutative Geometry -- Chapter 4. Definition and Existence of Quantum Isometry Groups -- Chapter 5. Quantum Isometry Groups of Classical and Quantum -- Chapter 6. Quantum Isometry Groups of Discrete Quantum Spaces -- Chapter 7. Nonexistence of Genuine Smooth CQG Actions on Classical Connected Manifolds -- Chapter 8. Deformation of Spectral Triples and Their Quantum Isometry Groups -- Chapter 9. More Examples and Computations -- Chapter 10. Spectral Triples and Quantum Isometry Groups on Group C*-Algebras.
    Content: This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes’ “noncommutative geometry” and the operator-algebraic theory of “quantum groups”. The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitly describe quantum isometry groups of most of the noncommutative manifolds studied in the literature. Some physical motivations and possible applications are also discussed.
    Additional Edition: ISBN 9788132236658
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9788132236658
    Language: English
    Keywords: Isometriegruppe ; Quantengruppe ; Nichtkommutative Geometrie
    URL: Volltext  (lizenzpflichtig)
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9788132216612?
Did you mean 9788132207672?
Did you mean 9788132236658?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages