Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    almahu_9947363262602882
    Umfang: IX, 262 p. , online resource.
    ISBN: 9789401006743
    Serie: Mathematical Modelling: Theory and Applications, 13
    Inhalt: The expression 'Neural Networks' refers traditionally to a class of mathematical algorithms that obtain their proper performance while they 'learn' from examples or from experience. As a consequence, they are suitable for performing straightforward and relatively simple tasks like classification, pattern recognition and prediction, as well as more sophisticated tasks like the processing of temporal sequences and the context dependent processing of complex problems. Also, a wide variety of control tasks can be executed by them, and the suggestion is relatively obvious that neural networks perform adequately in such cases because they are thought to mimic the biological nervous system which is also devoted to such tasks. As we shall see, this suggestion is false but does not do any harm as long as it is only the final performance of the algorithm which counts. Neural networks are also used in the modelling of the functioning of (sub­ systems in) the biological nervous system. It will be clear that in such cases it is certainly not irrelevant how similar their algorithm is to what is precisely going on in the nervous system. Standard artificial neural networks are constructed from 'units' (roughly similar to neurons) that transmit their 'activity' (similar to membrane potentials or to mean firing rates) to other units via 'weight factors' (similar to synaptic coupling efficacies).
    Anmerkung: I Fundamentals -- 1 Biological Evidence for Synapse Modification Relevant for Neural Network Modelling -- 2 What is Different with Spiking Neurons? -- 3 Recurrent Neural Networks: Properties and Models -- 4 A Derivation of the Learning Rules for Dynamic Recurrent Neural Networks -- II Applications to Biology -- 5 Simulation of the Human Oculomotor Integrator Using a Dynamic Recurrent Neural Network -- 6 Pattern Segmentation in an Associative Network of Spiking Neurons -- 7 Cortical Models for Movement Control -- 8 Implications of Activity Dependent Processes in Spinal Cord Circuits for the Development of Motor Control; a Neural Network Model -- 9 Cortical Maps as Topology—Representing Neural Networks Applied to Motor Control: Articulatory Speech Synthesis -- 10 Line and Edge Detection by Curvature—Adaptive Neural Networks -- 11 Path Planning and Obstacle Avoidance Using a Recurrent Neural Network.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9789401038645
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783401606743?
Meinten Sie 9789401000703?
Meinten Sie 9789401000741?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz