Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands :
    UID:
    almahu_9949198293702882
    Umfang: XIV, 238 p. , online resource.
    Ausgabe: 1st ed. 1992.
    ISBN: 9789401708456
    Serie: Huebner International Series on Risk, Insurance and Economic Security ; 15
    Inhalt: The debate between the proponents of "classical" and "Bayesian" statistica} methods continues unabated. It is not the purpose of the text to resolve those issues but rather to demonstrate that within the realm of actuarial science there are a number of problems that are particularly suited for Bayesian analysis. This has been apparent to actuaries for a long time, but the lack of adequate computing power and appropriate algorithms had led to the use of various approximations. The two greatest advantages to the actuary of the Bayesian approach are that the method is independent of the model and that interval estimates are as easy to obtain as point estimates. The former attribute means that once one learns how to analyze one problem, the solution to similar, but more complex, problems will be no more difficult. The second one takes on added significance as the actuary of today is expected to provide evidence concerning the quality of any estimates. While the examples are all actuarial in nature, the methods discussed are applicable to any structured estimation problem. In particular, statisticians will recognize that the basic credibility problem has the same setting as the random effects model from analysis of variance.
    Anmerkung: 1. Introduction -- 2. Bayesian Statistical Analysis -- 3. Computational Aspects of Bayesian Analysis -- 4. Prediction with Parameter Uncertainty -- 5. The Credibility Problem -- 6. The Hierarchical Bayesian Approach -- 7. The Hierarchical Normal Linear Model -- 8. Examples -- 9. Modifications to the Hierarchical Normal Linear Model -- Appendix. Algorithms, Programs, and Data Sets -- A. The Simplex Method of Function Maximization -- B. Adaptive Gaussian Integration -- C. Gauss-Hermite Integration -- D. Polar Method for Generating Normal Deviates -- E. GAUSS Programs -- 1. Simplex Maximization -- 2. Adaptive Gaussian Integration -- 3. Gauss-Hermite Integration -- 4. Monte Carlo Integration -- 5. Tierney-Kadane Integration -- F. Data Sets -- 1. Data Set 1 -- 2. Data Sets 2-4.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9789048157907
    Weitere Ausg.: Printed edition: ISBN 9780792392125
    Weitere Ausg.: Printed edition: ISBN 9789401708463
    Sprache: Englisch
    Fachgebiete: Wirtschaftswissenschaften , Mathematik
    RVK:
    RVK:
    Schlagwort(e): Einführung
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9783401708256?
Meinten Sie 9789401008426?
Meinten Sie 9783401708546?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz