Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sprache
Region
  • 1
    Buch
    Buch
    Köln :Taschen,
    UID:
    almahu_BV008898020
    Umfang: 200 S. : zahlr. Ill.
    ISBN: 3-8228-9511-3
    Sprache: Deutsch
    Fachgebiete: Allgemeines , Kunstgeschichte
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Farbholzschnitt ; Ukiyo-e ; Bildband ; Katalog ; Bildband ; Bildband ; Bildband ; Katalog
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949697634202882
    Umfang: 1 online resource (282 pages)
    ISBN: 978-0-12-821027-7 , 9780128210260
    Inhalt: Addition, Elimination and Substitution: Markovnikov, Hofmann, Zaitsev and Walden: Discovery and Development discusses foundational reactions in organic chemistry and their major protagonists, contributions to synthesis, and history. Hofmann, Zaitsev, and Markovnikov are introduced, along with their major discoveries and contributions to organic chemistry. The history of controversies around Markovnikovs Rule are addressed. The book introduces Waldens original demonstration of configuration inversion, then discusses bimolecular elimination reactions, regioselective addition reactions, regiospecific alkene synthesis, and the development of modern reactions with configuration inversion.
    Anmerkung: Front Cover -- ADDITION, ELIMINATION AND SUBSTITUTION: MARKOVNIKOV, HOFMANN, ZAITSEV AND WALDEN -- ADDITION, ELIMINATION AND SUBSTITUTION: MARKOVNIKOV, HOFMANN, ZAITSEV AND WALDEN: DISCOVERY AND DEVELOPMENT -- Contents -- Copyright -- ONE - Introduction: Organic Chemistry in the Nineteenth Century -- A 19th-century chronology of organic chemistry -- Atomic theory: a brief history -- Theories of organic chemistry -- Organic radicals: Theory of substitutions -- Theory of types -- Valence and the structural theory of organic chemistry -- References -- TWO - Vladimir Vasil'evich Markovnikov and his rule for addition -- Vladimir Vasil'evich Markovnikov (1837-1904) -- The education of the chemist -- With Kolbe at Leipzig -- Markovnikov's return to Kazan -- Markovnikov's resignation from Kazan -- Professor and head at Novorossiisk University -- Markovnikov's move to Moscow -- Markovnikov's initial work in Moscow -- Markovnikov, the Sanitation Guru: The Russo-Turkish war -- Markovnikov and cycloalkanes -- A new direction: petroleum chemistry -- Markovnikov's ouster from his professorship -- References -- THREE - Markovnikov's rule: history and development -- The first decades: early challenges to the validity of the rule -- Louis Henry -- Arthur Michael -- Yuliya (Julia) Vsevolodovna Lermontova -- Morris Selig Kharasch -- What is in a name? Markovnikov and anti-Markovnikov -- References -- FOUR - Aleksandr Mikhailovich Zaitsev and his empirical rule for elimination -- Aleksandr Mikhailovich Zaitsev (1841-1910) -- In Western Europe -- 1863: faux pas and recovery -- Theoretician no more: the synthetic organic chemist emerges -- Sulfur compounds in Marburg -- The return to Kazan -- Moving into leadership of the Kazan Chemical School -- Scientific work as professor at Kazan -- The genesis of Zaitsev's rule -- The feud -- Alkene oxidation. , Zaitsev's later career and legacy -- Awards and honors -- Zaitsev's legacy -- Yegor Yegorovich Wagner (Vagner) (1849-1903) -- Sergei Nikolaevich Reformatskii (1860-1934) -- Aleksandr Yerminingel'dovich Arbuzov (1877-1968) -- References -- FIVE - August Wilhelm von Hofmann and Hofmann's rule for elimination -- August Wilhelm von Hofmann (1818-92)4,5 -- Family connections -- Student years: Giessen -- Hofmann's career -- Bonn: docent and extraordinary professor, 1845 -- The Royal College of Chemistry: director, 1845-65 -- The University of Berlin: Professor, 1865-92 -- Hofmann's chemistry -- Coal-tar chemistry: aniline and aniline dyes -- Perkin and aniline dyes (mauveine) -- Alkylation of amines: the "Ammonia Type" -- Halogenation of amines and amides -- The Hofmann-Löffler-Freytag reaction -- The Hofmann rearrangement -- The Hofmann elimination92 -- References -- SIX - Paul Walden and the Walden inversion -- Introduction -- Paul Walden (Pauls Valdens, Pavel Ivanovich Val'den) -- Education -- Student years at the Polytechnic Institute (the Polytechnicum) -- Graduate studies and first academic appointments -- Leader at the Riga Polytechnic Institute -- Professor and Rector -- Consulting within the empire -- The Imperial Academy of Sciences in St. Petersburg -- World War I: evacuation of Riga -- Rostock -- Walden's scientific career as an independent researcher -- Research in physical chemistry -- Handbuch der Stereochemie -- Research in organic chemistry -- The Walden inversion and the Walden cycle -- Walden in the Third Reich -- Walden in retirement -- Walden, the historian of chemistry -- Afterword -- References -- SEVEN - Mechanistic studies -- Early mechanistic and stereochemical investigations -- Elimination reactions -- Hofmann elimination -- Zaitsev elimination -- Addition reactions -- The beginnings of modern mechanistic studies. , The key early players -- Nikolai Aleksandrovich Menshutkin (1842-907) -- Edward David Hughes -- Christopher Kelk Ingold -- The origin of physical organic chemistry: Menshutkin's kinetic studies -- Effects of reactant structure on the rate of esterification -- The Menshutkin reaction -- Classifying substitution and elimination mechanisms: Hughes and Ingold -- SN2 substitution and the Walden inversion: a stereochemical enigma -- Elimination reactions with base -- E2 elimination -- Electrophilic addition to alkenes -- Lowry-Brønsted acids -- Markovnikov hydration without rearrangement -- Kharasch and the "peroxide effect" -- Halogens and similar nonacidic electrophiles -- Isotope effect evidence for the mechanisms of elimination -- References -- EIGHT - Development of highly regioselective addition reactions of alkenes and alkynes -- Factors affecting reaction regiochemistry: the alkene -- Mechanisms of carbocation stabilization -- Using the Hammett σ+ parameter as a predictor of regiochemistry -- Silicon and tin as directing groups in electrophilic addition reactions of alkenes -- The Hosomi-Sakurai reaction -- Heteroatom-stabilized electrophilic carbocations: The Prins, Mannich, and Mukaiyama reactions -- The Prins reaction -- The Mannich reaction -- The Mukaiyama addition reactions -- Carbocation rearrangements in synthesis -- Anti-Markovnikov additions to alkenes -- Hydroboration of alkenes -- Hydrometallations of alkynes -- Hydroalumination -- Hydrozirconation of alkynes -- References -- NINE - Development of highly regiospecific alkene syntheses: elimination and its substitutes -- Introduction -- Steric effects of alkoxide anion bases -- β-Eliminations not involving deprotonation: reductive elimination -- Elimination during Wolff-Kishner and related reactions4 -- The Bamford-Stevens and Shapiro reactions -- The Bamford-Stevens reaction. , The Shapiro reaction -- The Wharton reaction -- Alkenes by 1,3-elimination and extrusion -- The Ramberg-Bäcklund reaction -- Where do we stand now? -- References -- TEN - Inversion of configuration in modern synthesis -- Introduction -- Effects of solvent on the mechanism and rates of nucleophilic substitutions -- Aprotic dipolar solvents -- Phase transfer catalysis -- SN2 displacement driven by the formation of a phosphoryl group -- Phosphine-based halogenating reagents -- The Mitsunobu reaction -- Immobilized Mitsunobu reagents41,42 -- The substoichiometric Mitsunobu reaction -- The Toy and Taniguchi variants -- A bona fide totally catalytic variant: the Aldrich variant -- Changing the paradigm: the Denton variant -- Thioethers directly from alcohols -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- Z -- Back Cover.
    Weitere Ausg.: Print version: Lewis, David E. Addition, Elimination and Substitution: Markovnikov, Hofmann, Zaitsev and Walden San Diego : Elsevier,c2022
    Sprache: Englisch
    Schlagwort(e): History. ; History.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    London, [England] :Academic Press,
    UID:
    almahu_9948025380802882
    Umfang: 1 online resource (773 pages)
    ISBN: 0-12-803789-X , 0-12-803739-3
    Anmerkung: Front Cover -- C-Furanosides -- C-Furanosides: Synthesis and Stereochemistry -- Copyright -- Contents -- The Stereochemistry of C-Furanosides -- 1 C-FURANOSIDES: STEREOCHEMISTRY AND NOMENCLATURE -- 2 RELATIONSHIPS BETWEEN HEXOSE-STEREOCHEMICAL NOMENCLATURE AND THE C-GLYCOSIDES OF FURANOSE-TYPE FRAMEWORKS -- 3 STEREOCHEMICAL MODELS FOR THE CONTROL OF THE CONFIGURATION AT C-1 -- 3.1 Stereospecific Approach -- 3.2 Stereoselective Reactions at the Anomeric Position Under Kinetic Control -- 3.2.1 Bicyclic Induction -- 3.2.2 1,3-Induction -- 3.2.3 1,2-Induction -- 3.3 Stereoselective Reactions Under Thermodynamic Control -- REFERENCES -- A C-Glycosides of Lyxose and Ribose: galacto-, altro- and allo- Configurations -- A - Introduction -- REFERENCES -- A.1 - galacto-C-Furanosides (I, β-C-Lyxose) -- DISCONNECTIONS -- NATURAL OCCURRENCE -- A.1.1 DISCONNECTION A -- A.1.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor -- A.1.1.1.1 Nucleophilic Substitution With Stabilized Enolates -- A.1.1.1.2 Nucleophilic Substitution With Cyanide -- A.1.1.1.3 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions -- A.1.1.1.4 Nucleophilic Substitution With Allylsilanes -- A.1.1.1.5 Nucleophilic Substitution With Silyl Enol Ethers and Ketene Acetals -- A.1.2 DISCONNECTION B -- A.1.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor -- A.1.2.2 Radical or Transition Metal Catalyzed Reduction of an Anomeric Heteroatomic Moiety -- A.1.2.3 Hydrogenation of an Exocyclic Enol Ether (exo-Glycal) at the Anomeric Position -- A.1.2.4 Hydroboration of an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal) -- A.1.2.5 Radical Addition to an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal) -- A.1.3 DISCONNECTION C -- A.1.3.1 Acid-Catalyzed Cyclization of 1,4-Diols. , A.1.3.2 Intramolecular Reaction Between an Alcohol or Ether and a Sulfonate Leaving Group -- A.1.3.2.1 With a 4-Toluenesulfonate Leaving Group -- A.1.3.2.2 With a Methanesulfonate Leaving Group -- A.1.3.2.3 With a Cyclic Sulfate Leaving Group -- A.1.3.2.4 With a Trifluoromethanesulfonate Leaving Group -- A.1.3.3 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction -- A.1.3.4 Intramolecular Reaction Between an Alcohol and an Epoxide -- A.1.3.5 Intramolecular Addition of an Alcohol to an Unsaturated Moiety -- A.1.3.5.1 Electrophilic Additions to Alkenes -- A.1.3.5.2 oxa-Michael Addition to Electron-Deficient Alkenes -- A.1.3.5.3 Tandem Olefination-oxa-Michael Additions of Carbohydrate Hemiacetals -- A.1.3.5.4 Tandem Condensation-oxa-Michael Reactions of Carbohydrate Hemiacetals -- A.1.4 DISCONNECTION D -- A.1.4.1 Reduction of a Ketone -- A.1.4.2 Stereospecific Inversion -- A.1.5 MISCELLANEOUS -- A.1.5.1 Diels-Alder Approach -- A.1.6 CONCLUSION -- REFERENCES -- A.2 - d- and l-altro-C-furanosides (II/ent-II, α-C-Lyxose, α-C-Ribose) -- DISCONNECTIONS -- NATURAL OCCURRENCE -- A.2.1 DISCONNECTION A -- A.2.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor -- A.2.1.1.1 Nucleophilic Substitution With Alkyl, Alkynyl, and Vinyl Organometallic Reagents -- A.2.1.1.2 Nucleophilic Substitution of Anomeric Halides With Aryl and Heteroaryl Organometallic Reagents -- A.2.1.1.3 Friedel-Crafts-Type Reactions -- A.2.1.1.4 Nucleophilic Substitution With Cyanide -- A.2.1.1.5 Nucleophilic Substitution of Anomeric Halides With Stabilized Enolates -- A.2.1.1.6 Nucleophilic Substitution With Enol Silanes -- A.2.1.1.7 Nucleophilic Substitution With Allylsilane Derivatives -- A.2.1.1.8 Nucleophilic Substitution With Allylboron Derivatives -- A.2.1.2 Coupling Between a Radical Anomeric Carbon and a Carbon Donor. , A.2.1.2.1 Radical Substitution With an Allyltin Derivative -- A.2.1.2.2 Coupling Between a Radical Anomeric Carbon and an Unsaturated Derivative -- A.2.1.2.3 Addition of an Anomeric Glycosyl Radical to an Aromatic Moiety -- A.2.2 DISCONNECTION B -- A.2.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor -- A.2.2.2 Samarium Diiodide Reduction of an Anomeric Hemiketal Moiety -- A.2.2.3 Hydrogenation of an Exocyclic Unsaturated Derivative at the Anomeric Position (exo-Glycal) -- A.2.3 DISCONNECTION C -- A.2.3.1 Acid Catalyzed Cyclization of 1,4-Diols -- A.2.3.2 Intramolecular Reaction Between an Alcohol and a Halogen Leaving Group -- A.2.3.3 Intramolecular Reaction Between an Alcohol or Ether and a Sulfonate Leaving Group -- A.2.3.3.1 Selective Activation With a 4-Toluenesulfonate Leaving Group -- A.2.3.3.2 With a Methanesulfonate Leaving Group -- A.2.3.3.3 With a Trifluoromethanesulfonate Leaving Group -- A.2.3.3.4 With an Imidazolylsulfonate or Diethylaminosulfonate Leaving Group -- A.2.3.3.5 Ring Contractions With Other Heteroelement Leaving Groups -- A.2.3.4 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction -- A.2.3.5 Intramolecular Reaction Between an Alcohol and an Epoxide -- A.2.3.5.1 5-exo-tet Cyclization of Epoxy Alcohols -- A.2.3.5.2 5-endo-tet Cyclization of Epoxy Alcohols or Ethers -- A.2.3.6 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety -- A.2.3.6.1 Intramolecular Electrophilic Additions to Alkenes -- A.2.3.6.2 Tandem Olefination-oxa-Michael Additions of Carbohydrate Hemiacetals -- A.2.3.6.3 Tandem Condensation-oxa-Michael Additions of Carbohydrate Hemiacetals -- A.2.3.6.4 oxa-Michael Additions to Electron-Deficient Alkenes -- A.2.3.7 Equilibration Processes -- A.2.4 DISCONNECTION D -- A.2.5 DISCONNECTION E -- A.2.6 MISCELLANEOUS -- A.2.6.1 Transition Metal-Promoted CO Insertions -- A.2.7 CONCLUSION. , REFERENCES -- A.3 - allo-C-Furanosides (VI, β-C-Ribose) -- DISCONNECTIONS -- NATURAL OCCURRENCE -- A.3.1 DISCONNECTION A -- A.3.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor -- A.3.1.1.1 Nucleophilic Substitution With Alkyl, Vinyl, and Alkynyl Organometallic Reagents -- A.3.1.1.2 Nucleophilic Substitution With Aryl and Heteroaryl Organometallic Reagents -- A.3.1.1.3 Transition Metal-Catalyzed Substitutions With Aryl and Heteroaryl Organometallic Reagents -- A.3.1.1.4 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions -- A.3.1.1.5 Nucleophilic Substitution With Cyanide -- A.3.1.1.6 Nucleophilic Substitution With Allylsilane Derivatives -- A.3.1.1.7 Substitution With Allyltin Derivatives -- A.3.1.1.8 Nucleophilic Substitution With Enol Silanes -- A.3.1.1.9 Carbene Displacement Reactions -- A.3.1.2 Coupling Between an Anomeric Carbon Radical and an Alkene -- A.3.1.3 Coupling Between an Anomeric Radical Carbon and an Aromatic Derivative -- A.3.1.4 Disconnection A by Other Mechanisms -- A.3.1.4.1 Samarium Diiodide Activation -- A.3.1.4.2 [1,2]-Wittig Rearrangement -- A.3.2 DISCONNECTION B -- A.3.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor -- A.3.2.2 Single-Electron Transfer Reduction of Ketofuranose Acetates -- A.3.2.3 Addition of Radical Species to an Exocyclic Unsaturated Carbon at the Anomeric Position (exo-Glycal) -- A.3.3 DISCONNECTION C -- A.3.3.1 Acid-Catalyzed Cyclization of a 1,4-Diol -- A.3.3.2 Intramolecular Reaction Between an Alcohol and a Halogen Leaving Group -- A.3.3.3 Intramolecular Reaction Between an Alcohol and a Sulfonate Leaving Group -- A.3.3.3.1 With a 4-Toluenesulfonate Leaving Group -- A.3.3.3.2 With a Methanesulfonate Leaving Group -- A.3.3.3.3 With a Trifluoromethanesulfonate Leaving Group -- A.3.3.4 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction. , A.3.3.5 Intramolecular Reaction Between an Alcohol and an Epoxide -- A.3.3.6 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety -- A.3.3.6.1 Electrophilic Additions to Alkenes -- A.3.3.6.2 Oxa-Michael Addition to Electron-Deficient Alkenes -- A.3.3.6.3 Tandem Wittig-Horner-oxa-Michael Additions With Esters -- A.3.3.6.4 Tandem Wittig-Horner-oxa-Michael Addition With Ketones -- A.3.3.6.5 Tandem Wittig-Horner-oxa-Michael Additions With Other Functionalities -- A.3.3.6.6 Tandem Condensation-oxa-Michael Additions -- A.3.3.7 Equilibration Processes -- A.3.4 DISCONNECTION D -- A.3.4.1 Inversion of Configuration -- A.3.4.2 Reduction of a Ketone -- A.3.5 DISCONNECTION E -- A.3.6 MISCELLANEOUS -- A.3.6.1 Diels-Alder Approach -- A.3.6.2 Transition Metal Approaches -- A.3.7 CONCLUSION -- REFERENCES -- A.4 - Lyxose and Ribose C-Glycosides: Other Results and Further Insight Into Stereochemistry -- A.4.1 DISCONNECTION A -- A.4.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor -- A.4.1.1.1 Nucleophilic Substitutions Using Alkyl, Vinyl, and Alkynyl Organometallic Reagents: Further Insight Into the Role of Tight ... -- A.4.1.1.2 Nucleophilic Substitutions Using Aryl and Heteroaryl Organometallic Reagents: Further Insight Into Thermodynamic Control -- A.4.1.1.3 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions -- A.4.1.1.4 Nucleophilic Substitution With Cyanide: Further Insight Into C-2 Participation -- A.4.1.1.5 Substitution With Allyl Organometallic Reagents: Further Insight Into Woerpel Selectivity and Solvent Effects -- A.4.1.1.6 Substitution With Silyl Enol Ethers and Ketene Acetals -- A.4.1.2 Coupling Between a Radical Anomeric Carbon and an Aromatic Derivative: Further Insight Into Additions of Carbohydrate Radic ... -- A.4.2 DISCONNECTION B. , A.4.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor: Further Insights Into the Limits of Bicyclic and Woerpel Inductions.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    almahu_9949550141502882
    Umfang: 1 online resource (481 pages)
    Ausgabe: 1st ed.
    ISBN: 0-323-95947-4
    Inhalt: Handbook of Organic Named Reactions: Reagents, Mechanisms and Applications discusses the reactions used in organic synthesis, showing the value and scope of these reactions and how they are used in the synthesis of organic molecules. Presenting an accounting of the traditional methods used, as well as the latest details on the advances made in synthetic chemistry research, the named reactions of carbonyl compounds, alcohols, amines, heterocyclic molecules, rearrangements and coupling reactions are all included. Explaining the established research and including detailed mechanism information, step-by-step descriptions, problems and the applications of named reactions in industry, this book also discusses emerging aspects.
    Anmerkung: Front Cover -- Handbook of Organic Name Reactions -- Copyright Page -- Contents -- Foreword -- Preface -- 1 Organic reaction mechanism -- 1.1 Basics of organic chemistry -- 1.1.1 Inductive Effect -- 1.1.2 Electromeric Effect -- 1.1.3 Mesomeric effect/Resonating effect /Conjugation effect -- 1.1.4 Resonance -- 1.1.5 Hyperconjugation or no-bond resonance -- 1.2 Reaction intermediates: carbocation, carbanion, free radical, carbene, nitrene, and benzyne -- 1.2.1 Carbocation -- 1.2.2 Carbanion -- 1.2.3 Carbon-free radical -- 1.2.4 Carbene -- 1.2.5 Nitrene -- 1.2.6 Benzyne/aryne -- 1.3 Nucleophilic addition to carbon-heteroatoms multiple bonds -- 1.4 Electrophilic addition to carbon-carbon multiple bonds -- 1.4.1 Addition of bromine to alkenes -- 1.4.2 Regioselectivity of electrophilic addition to unsymmetrical alkenes -- 1.4.3 Formation of epoxide from alkene -- 1.4.4 Reaction of NBS to alkene -- 1.4.5 Iodo-and Bromo-lactonization -- 1.4.6 Addition of water molecule to alkene and alkynes -- 1.4.7 Dihydroxylation of alkenes -- 1.4.8 Ozonolysis -- 1.4.9 Hydroboration -- 1.5 Nucleophilic aliphatic substitution and neighboring group participation -- 1.6 Unimolecular nucleophilic substitution (SN1)reaction -- 1.7 Bimolecular nucleophilic substitution (SN2)reaction -- 1.8 Neighbouring group participation (NGP) -- 1.9 Substitution nucleophilic internal (SNi) Mechanism -- 1.10 Nucleophilic aromatic substitution -- 1.10.1 Addition-elimination mechanism (An activatedcomplex mechanism) -- 1.10.2 Elimination-addition mechanism (Benzyne mechanism) -- 1.11 Electrophilic aliphatic, alkenyl, and alkynyl substitution reaction -- 1.11.1 Unimolecular electrophilic aliphatic substitution (SE1) reaction -- 1.11.2 Bimolecular aliphatic electrophilic substitution reaction (SE1 and SEi) -- 1.11.3 Electrophilic substitution reaction at the allylic group. , 1.12 Electrophilic aromatic substitution reaction -- 1.13 Elimination reaction -- 1.13.1 Unimolecular elimination (E1) reaction -- 1.13.2 Bimolecular elimination E2 reaction -- 1.13.3 Unimolecular conjugated base (E1cB) Elimination reaction -- References -- 2 Reactions of aldehydes and ketones -- 2.1 Aldol condensation reaction -- 2.1.1 Cross-aldol condensation reaction -- 2.1.1.1 Reactivity of carbonyl compounds with nucleophilic agents -- 2.1.2 Henry nitroaldol condensation -- 2.1.3 Intramolecular aldol condensation -- 2.1.4 Barbas-list asymmetric aldol reaction -- 2.1.5 Mukaiyama aldol reaction -- 2.2 Baeyer-Villiger oxidation -- 2.3 Bamford-Stevens reaction -- 2.3.1 Selectivity in Bamford-Stevens reaction -- 2.4 Barton decarboxylation reaction -- 2.5 Barbier reaction -- 2.6 Barbier in situ Grignard reaction -- 2.7 Baer-Fischer amino sugar synthesis -- 2.8 Baylis-Hillman reaction -- 2.8.1 Intramolecular Baylis-Hillman reaction -- 2.9 Benzoin condensation -- 2.10 Bischler-Napieralski reaction -- 2.11 Bouveault-Blanc reduction reaction -- 2.12 Brown antialdol via B-enolate -- 2.13 Cannizzaro reaction -- 2.14 Claisen ester condensation -- 2.15 Clemmensen reduction reaction -- 2.16 Ciamician C=O photocoupling -- 2.17 Crimmins-Heathcock chiral anti-(syn) aldols -- 2.18 Cross-Cannizzaro reaction -- 2.19 Dakin reaction -- 2.20 Darzens reaction -- 2.21 De Mayo C=C photocycloaddition -- 2.22 Dieckmann condensation/cyclization reaction -- 2.23 Fujiwara arylation carboxylation -- 2.24 Gattermann aldehyde synthesis -- 2.25 Gattermann-Koch reaction -- 2.26 Haller-Bauer reaction -- 2.27 Haloform reaction -- 2.28 Hell-Volhard-Zelinsky reaction -- 2.29 Hunsdiecker reaction -- 2.30 Hollemann pinacol synthesis -- 2.31 Julia-Colonna asymmetric epoxidation -- 2.32 Knoevenagel reaction -- 2.33 Kiliani-Fischer sugar homologation -- 2.34 Mannich reaction. , 2.35 Meerwein-Ponndorf-Verley reduction reaction -- 2.35.1 Applications of the Meerwein-Ponndorf-Verley reduction reaction -- 2.36 Michael addition -- 2.37 Norrish type-I reaction -- 2.38 Norrish type-II reaction -- 2.39 Paterno-Buchi reaction -- 2.40 Perkin reaction -- 2.41 Peterson olefination -- 2.42 Reformatsky reaction -- 2.43 Riley selenium dioxide oxidation -- 2.44 Ruff-Fenton aldose degradation -- 2.45 Robinson annulation reaction -- 2.46 Rosenmund reaction -- 2.47 Shapiro reaction -- 2.47.1 Selectivity in Shapiro reaction -- 2.48 Stobbe condensation reaction -- 2.49 Stork enamine alkylation -- 2.50 Tebbe reaction -- 2.51 Tishchenko reaction -- 2.52 Tollens reaction -- 2.53 Wittig reaction -- 2.53.1 Methods for the formation of phosphonium ylide -- 2.53.2 Stereochemistry of Wittig reaction -- 2.54 Wolff-Kishner reduction -- References -- Further reading -- 3 Reaction of alcohols -- 3.1 Barton-McCombie deoxygenation -- 3.2 Baeyer-Villiger aromatic tritylation -- 3.3 Corey-Winter olefin synthesis -- 3.4 Corey-Chan synthesis -- 3.5 Gattermann synthesis reaction -- 3.6 Grieco olefination of alcohols -- 3.7 Houben-Hoesch reaction -- 3.8 Kolbe-Schmitt reaction -- 3.9 Mitsunobu reaction -- 3.9.1 Stereochemistry of Mitsunobu reaction -- 3.10 Moffatt oxidation -- 3.11 Mukaiyama-Ueno oxidation -- 3.12 Reimer-Tiemann reaction -- 3.13 Ritter reaction -- 3.14 Swern oxidation reaction -- 3.15 Sharpless asymmetric epoxidation -- 3.16 Sharpless asymmetric dihydroxylation -- 3.17 Simmons-Smith cyclopropanation -- 3.17.1 Stereochemistry of Simmons-Smith reaction -- 3.17.2 Selectivity of Simmons-Smith reaction -- 3.17.3 Reactivity of reactants for Simmons-Smith reaction -- 3.17.4 Directed Simmons-Smith reaction -- References -- 4 Reactions of heterocyclic compounds -- 4.1 Algar-Flynn-Oyamada reaction. , 4.1.1 Formation of other products [a side reaction (by-product)] -- 4.2 Bischler-Mohlau indole synthesis -- 4.3 Camps quinoline synthesis -- 4.4 Chichibabin reaction -- 4.5 Clauson-Kaas pyrrole synthesis -- 4.6 Combes quinoline synthesis -- 4.6.1 Electrocyclic mechanism -- 4.7 Dimroth triazole synthesis -- 4.8 Finnegan tetrazole synthesis -- 4.9 Fischer indole synthesis -- 4.10 Hantzsch pyrrole synthesis -- 4.11 Hantzsch thiazole synthesis -- 4.12 Knorr pyrrole synthesis -- 4.13 MacDonald porphyrin synthesis -- 4.14 Madelung indole synthesis -- 4.15 Pfitzinger quinoline synthesis -- 4.16 Pomeranz-Fritsch-Schlitter isoquinoline synthesis -- 4.17 Reissert indole synthesis -- 4.18 Skraup synthesis -- References -- 5 Coupling reactions -- 5.1 Buchwald-Hartwig coupling -- 5.2 Fukuyama thioester coupling -- 5.2.1 Catalytic cycle of Fukuyama thioester coupling reaction -- 5.3 Furstner iron-catalyzed C=C coupling -- 5.4 Glaser-Sondheimer acetylene coupling -- 5.5 Hiyama coupling -- 5.5.1 Catalytic cycle of Hiyama coupling reaction -- 5.6 Heck coupling -- 5.6.1 Examples of Heck coupling reactions -- 5.6.2 Intramolecular Heck coupling reaction -- 5.6.3 Catalytic cycle of Heck coupling reactions -- 5.7 Knochel coupling -- 5.8 Kumada coupling -- 5.8.1 Reactivity of halogens for Kumada coupling reaction -- 5.8.2 Catalytic cycle of Kumada coupling reaction -- 5.9 McMurry coupling -- 5.10 Negishi coupling -- 5.10.1 Catalytic cycle of Negishi coupling reaction -- 5.11 Sonogashira coupling -- 5.11.1 Catalytic cycle of Sonogashira coupling reaction -- 5.12 Stille coupling -- 5.12.1 Catalytic cycle of Stille coupling -- 5.12.2 Catalytic cycle in the presence of CO -- 5.13 Suzuki coupling -- 5.13.1 Reactivity of substrate for Suzuki coupling reaction -- 5.13.2 Catalytic cycle of Suzuki coupling reactions -- 5.14 Castro-Stephens acetylene coupling -- References. , 6 Rearrangements, participation, and fragmentation reactions -- 6.1 Arndt-Eistert homologation -- 6.2 Beckmann rearrangement -- 6.2.1 Stereochemistry of Beckmann rearrangement -- 6.2.2 Beckmann fragmentation -- 6.3 Benzidine rearrangement -- 6.4 Benzil-benzilic acid rearrangement -- 6.4.1 Rate of reaction -- 6.5 Brook rearrangement -- 6.5.1 Characteristics -- 6.6 Sigmatropic rearrangements -- 6.6.1 Aza-Cope rearrangements -- 6.6.2 Claisen rearrangement -- 6.6.2.1 Conditions for Claisen rearrangement -- 6.6.3 Cope rearrangement -- 6.6.3.1 Condition for Cope rearrangement - -- 6.6.4 Intramolecular aldol condensation -- 6.6.5 Ireland-Claisen rearrangement -- 6.6.6 Oxy-Cope rearrangements -- 6.7 Carroll allyl β-ketoester rearrangement -- 6.8 Chan acyloxyacetic ester rearrangement -- 6.9 Curtius rearrangement -- 6.10 Demjanov diazonium rearrangement -- 6.11 Eschenmoser fragmentation reaction -- 6.12 Favorskii rearrangement -- 6.12.1 Favorskii rearrangement in cyclic ketones -- 6.13 Fries rearrangement -- 6.13.1 Reason for the o-isomer to be a major product -- 6.13.2 Conditions for Fries rearrangement -- 6.14 Grob fragmentation -- 6.15 Hofmann rearrangement -- 6.16 Lossen rearrangement -- 6.17 Nazarov cyclization -- 6.18 Neber rearrangement -- 6.19 Photo-Fries rearrangement -- 6.20 Pschorr cyclization -- 6.21 Payne rearrangement -- 6.22 Semipinacol rearrangement -- 6.23 Schmidt rearrangement -- 6.24 Smiles rearrangement -- 6.25 Sommelet-Hauser rearrangement -- 6.26 Tiffeneau-Demjanov ring expansion -- 6.27 von Richter rearrangement -- 6.28 Wagner-Meerwein rearrangement -- 6.29 Wittig rearrangement -- 6.30 Wolff rearrangement -- 6.30.1 Nature of 1,2 migration -- 6.31 Zimmerman Di-π methane rearrangement -- 6.31.1 Stereochemistry of Di-π methane rearrangement -- 6.31.2 Selectivity in the breaking of cyclopropane ring -- References. , 7 Reaction of amines, carboxylic acid, and derivatives.
    Weitere Ausg.: Print version: Verma, Dakeshwar Kumar Handbook of Organic Name Reactions San Diego : Elsevier,c2023 ISBN 9780323959483
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Buch
    Buch
    Seattle [u.a.] :Univ. of Washington Press,
    UID:
    almafu_BV035826911
    Umfang: XII, 292 S. : , zahlr. Ill.
    ISBN: 978-0-295-98902-0
    Anmerkung: Includes bibliographical references and index
    Sprache: Englisch
    Schlagwort(e): 1434-1525 Tosa, Mitsunobu ; Bilderrolle ; Bilderrolle
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    New York, NY :Springer New York :
    UID:
    almahu_9949419219802882
    Umfang: 1 online resource (XVI, 617 p. 609 illus., 19 illus. in color.)
    Ausgabe: 1st ed. 2022.
    ISBN: 1-0716-1579-3
    Serie: Methods in Pharmacology and Toxicology,
    Inhalt: This detailed book highlights several emerging areas in the implementation of green chemistry in medicinal chemistry drug discovery with a specific focus on their application to the expeditious discovery of new biologically active entities. Divided into three sections, the collection explores greener approaches to chemical transformations that are both prevalent and have been highlighted as challenging within the pharmaceutical industry, overall synthetic strategy, as well as the implementation and impact of a range of enabling technologies within medicinal chemistry. As a volume of the Methods in Pharmacology and Toxicology series, chapters provide the kind of key insight that can guide researchers toward greater success in the lab. Authoritative and practical, Green Chemistry in Drug Discovery: From Academia to Industry provides both a fundamental insight into the progress that has been made as well as some of the challenges that still exist for these techniques to be effectively implemented in the drug discovery process in a routine manner.
    Anmerkung: Green Synthesis of Common Heterocycles -- Greener Methods for Amide Bond Synthesis -- Mitsunobu Reactions in Medicinal Chemistry and Development of Practical Modifications -- Direct Nucleophilic Substitution of Alcohols by Brønsted or Lewis Acids Activation: An Update -- Friedel-Crafts Reactions -- Ionic Liquids: Design and Applications -- Designing Efficient Cascade Reactions in Drug Discovery -- Multicomponent Synthesis: Cohesive Integration of Green Chemistry Principles -- Direct C–H Functionalization Approaches to Pharmaceutically Relevant Molecules -- C–H Activation with Photoredox Catalysis -- In Situ Protecting Groups for Chemoselective Transformations -- Expanding the Biocatalysis Toolbox -- New Directions in Coupling Chemistry -- Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry -- Reaction Optimization: A High-Throughput Experimentation Approach -- Radiopharmaceutical Discovery with 11CO2-Fixation Methods Inspired by Green Chemistry.
    Weitere Ausg.: ISBN 1-0716-1577-7
    Sprache: Englisch
    Schlagwort(e): Llibres electrònics ; Llibres electrònics
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    San Diego :Academic Press,
    UID:
    almahu_9948025487502882
    Umfang: 1 online resource (xvii, 322 pages) : , illustrations
    ISBN: 1-281-02586-0 , 9786611025861 , 0-08-054240-9
    Inhalt: With the explosion of combinatorial solid-phase methods, access to information has become one of the main barriers facing a synthetic chemist who is contemplating a combinatorial approach to a medicinal chemistry problem. The Combinatorial Index is an answer to that problem. This compendium of methods from the primary literature provides quick and convenient access to reliable synthetic transformations as well as information on linkers and analytical methods. Each synthetic procedure is preceded by a section entitled"Points of Interest, "which highlights the strengths and weaknesses of the various studies. The index also covers the use of solution-based synthesis for the generation of molecular diversity. Key Features * Organized for rapid retrieval of published information on classes of synthetic transformations, linkers, and analytical methods * Serves as a laboratory manual for bench chemists * Includes a chapter on linkers to assist in choice of linking strategy * Discusses strengths and limitations of the various methods * Contains a structural index showing functional group transformations in solid-phase synthesis.
    Anmerkung: Description based upon print version of record. , Front Cover; THE COMBINATORIAL INDEX; Copyright Page; Contents; Foreword; Acknowledgments; Chapter 1. Introduction; Chapter 2. Background; Chapter 3. Linkers for Solid-Phase Synthesis; 3.1 Resin Derivatization; 3.2 Linkers for Carboxylic Acids; 3.3 Linkers for Amides; 3.4 Linkers for Alcohols and Amines; 3.5 Linkers for Hydrocarbons and Other Functional Groups; Chapter 4. Combinatorial Solid-Phase Synthesis; 4.1 Condensations to Prepare Amides, Esters, Ureas, Imines, and Phosphorus Compounds; 4.2 Carbon-Carbon Bond Formation on Solid Support; 4.3 Mitsunobu Reactions on Solid Support , 4.4 Substitution and Addition Reactions on Solid Support 4.5 Oxidations on Solid Support; 4.6 Reductions on Solid Support; 4.7 Preparation of Heterocyclic Compounds; Chapter 5. Analytical Methods for Solid-Phase Synthesis; 5.1 Colormetric Assays on Solid Support; 5.2 Identification of Compounds Released from Resin; 5.3 NMR Techniques for Solid-Phase Synthesis; 5.4 IR Techniques for Solid-Phase Synthesis; 5.5 Mass Spectrometry Techniques for Solid-Phase Synthesis; 5.6 Other Analytical Methods for Combinatorial Synthesis , Chapter 6. Preparation of Solution Libraries and Combined Approaches at the Solution/Solid-Phase Interface 6.1 Solution Libraries; 6.2 Resin Capture; 6.3 Support-Bound Reagents; Appendix 1. Summary of Functional Group Transformations for Combinatorial Solid-Phase Synthesis; Appendix 2. Classification of Heterocyclization Reactions; Appendix 3. Unnatural Biopolymers; Appendix 4. Oligosaccharides; Appendix 5. List of Abbreviations; Author Index; Subject Index , English
    Weitere Ausg.: ISBN 0-12-141340-3
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Amsterdam ; : Elsevier,
    UID:
    almahu_9947367385402882
    Umfang: 1 online resource (497 p.)
    Ausgabe: 2nd ed.
    ISBN: 1-282-71148-2 , 9786612711480 , 0-08-092702-5
    Inhalt: This book provides the ""nuts and bolts"" background for a successful study of carbohydrates - the essential molecules that not only give you energy, but are an integral part of many biological processes.A question often asked is 'Why do carbohydrate chemistry?' The answer is simple: It is fundamental to a study of biology. Carbohydrates are the building blocks of life and enable biological processes to take place.Therefore the book will provide a taste for the subject of glycobiology.Covering the basics of carbohydrates and then the chemistry and reactions of carbohydrates
    Anmerkung: Rev. ed. of: Carbohydrates : the sweet molecules of life / Robert V. Stick. 2001. , Front Cover; Carbohydrates: The Essential Molecules of Life; Copyright Page; Table of Contents; Preface and Acknowledgements; Abbreviations; CHAPTER 1: The 'Nuts and Bolts' of Carbohydrates; The Early Years; The Constitution of Glucose and Other Sugars; The Cyclic Forms of Sugars, and Mutarotation; The Shape (Conformation) of Cyclic Sugars, and the Anomeric Effect; References; CHAPTER 2: Synthesis and Protecting Groups; Esters; Acetates; Benzoates; Chloroacetates; Pivalates; Levulinates; Carbonates, borates, phosphates, sulfates and nitrates; Sulfonates; Ethers; Methyl ethers; Benzyl ethers , 4-Methoxybenzyl ethersAllyl ethers; Trityl ethers; Silyl ethers; Acetals; Cyclic acetals; Benzylidene acetals; 4-Methoxybenzylidene acetals; Isopropylidene acetals; Diacetals; Cyclohexylidene acetals; Dithioacetals; Thioacetals; Stannylene acetals; The Protection of Amines; Orthogonality; References; CHAPTER 3: The Reactions of Monosaccharides; Oxidation; Reduction; Halogenation; Non-anomeric halogenation; Anomeric halogenation; Alkenes and Carbocycles; Non-anomeric alkenes; Anomeric alkenes; Carbocycles; Anhydro Sugars; Non-anomeric anhydro sugars; Anomeric anhydro sugars , Deoxy, Amino Deoxy and Branched-chain SugarsDeoxy sugars; Amino deoxy sugars; Branched-chain sugars; Miscellaneous Reactions; Wittig reaction; Thiazole-based homologation; Mitsunobu reaction; Orthoesters; Industrially Important Ketoses; D-Fructose; L-Sorbose; Isomaltulose; Lactulose; Aza and Imino Sugars; References; CHAPTER 4: Formation of the Glycosidic Linkage; General; The different glycosidic linkages; The mechanism of glycosidation; Ion pairs and the solvent; The substituent at C2; The 'armed/disarmed' concept; The 'torsional control' concept; The 'latent/active' concept , Activation of the glycosyl acceptorThe concept of 'orthogonality'; 'Reciprocal donor/acceptor selectivity'; Hemiacetals; Glycosyl Esters; Glycosyl Halides and Orthoesters; The Koenigs-Knorr reaction (1,2-trans); The orthoester procedure (1,2-trans); Halide catalysis (1,2-cis); Glycosyl fluorides (1,2-cis and 1,2-trans); Glycosyl Imidates (1,2-cis and 1,2-trans); Thioglycosides (1,2-cis and 1,2-trans); Seleno- and Telluroglycosides; Glycosyl Sulfoxides (sulfinyl glycosides; 1,2-cis and 1,2-trans); Glycals; 4-Pentenyl Activation (1,2-cis and 1,2-trans); ß-D-Mannopyranosides (1,2-cis) , Glycosyl halidesGlycosyl sulfoxides (and thioglycosides); ß-D-Glucopyranoside to ß-D-mannopyranoside; Intramolecular aglycon delivery; Other methods; ß-Rhamnopyranosides (1,2-cis); 2-Acetamido-2-deoxy Glycosides; 2-Deoxy Glycosides; Sialosides; Furanosides; Miscellaneous Methods; Alkenyl glycosides; Remote activation; C-Glycosides; The addition of carbanions to anomeric electrophiles; The addition of electrophiles to anomeric carbanions; Glycosyl radicals; Miscellaneous; References; CHAPTER 5: Oligosaccharide Synthesis; Strategies in Oligosaccharide Synthesis; Linear syntheses , Convergent syntheses , English
    Weitere Ausg.: ISBN 0-240-52118-8
    Sprache: Englisch
    Fachgebiete: Chemie/Pharmazie
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    almahu_9948026588602882
    Umfang: 1 online resource (413 pages) : , illustrations
    ISBN: 0-08-102249-2 , 0-08-102237-9
    Anmerkung: Front Cover -- Vicinal Diaryl Substituted Heterocycles: A Gold Mine for the Discovery of Novel Therapeutic Agents -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- List of Abbreviations -- Chapter 1: Vicinal Diaryl Heterocyclic System: A Privileged Scaffold in the Discovery of Potential Therapeutic Agents -- 1.1 Brief Perspective of Heterocyclic Compounds -- 1.2 Vicinal Diaryl-Substituted Heterocyclic Systems -- 1.3 Importance of VDHS in the Discovery of Therapeutic Agents -- 1.3.1 Clinically Used Drugs -- 1.3.2 Therapeutically Potential Compounds -- 1.3.2.1 Anticancer Agents -- 1.3.2.2 COX-2 Inhibitors -- 1.3.2.3 Antihypercholesterolemic Agents -- 1.3.2.4 Antiviral Agents -- 1.3.2.5 CB1 Receptor Antagonists -- 1.3.2.6 Antimicrobial Agents -- 1.3.2.7 Miscellaneous Agents -- 1.4 Concluding Remarks -- References -- Chapter 2: Therapeutic Potential of Vicinal Diaryl Azetidin-2-ones -- 2.1 Synthesis of Vicinal Diaryl Azetidin-2-Ones -- 2.1.1 The Staudinger Reaction (Ketene-Imine Reaction) -- 2.1.2 Enolate-Imine Condensation Reaction -- 2.1.3 The Mitsunobu Reaction -- 2.2 Biological Spectrum of Vicinal Diaryl Azetidin-2-Ones -- 2.2.1 Cholesterol Absorption Inhibitors -- 2.2.2 Antiproliferative Agents -- 2.2.3 Antimicrobial and Antitubercular Agents -- 2.2.4 Anti-inflammatory and Analgesic Agents -- 2.3 Conclusion -- References -- Chapter 3: Vicinal Diaryl Pyrroles: Synthesis and Biological Aspects -- 3.1 Introduction -- 3.2 Synthesis of Different Vicinal Diaryl Pyrroles -- 3.3 Biological Spectrum of Vicinal Diaryl Pyrroles -- 3.3.1 Antiproliferative Agents -- 3.3.1.1 1,2-Diarylpyrroles -- 3.3.1.2 2,3-Diarylpyrroles -- 2,3-Diarylpyrroles as ER Binding Agents -- 3.3.1.3 3,4-Diarylpyrroles -- 3,4-Diarylpyrroles as VEGF-R Inhibitors -- 3.3.1.4 4,5-Diarylpyrroles -- 3.3.1.5 1,5-Diarylpyrroles. , 3.3.2 Anti-inflammatory Agents/COX-2 Inhibitors -- 3.3.2.1 1,5-Diarylpyrroles -- 1,5-Diarylpyrroles as EP1 Receptor Antagonists -- 3.3.3 Antitubercular Agents -- 3.3.3.1 3,4-Diarylpyrroles -- 3.3.3.2 1,5-Diarylpyrroles -- 3.3.4 Anticoccidial Agents -- 3.3.4.1 2,3-Diarylpyrroles -- 3.3.5 1,5-Diarylpyrroles as Carbonic Anhydrase IX (hCA IX) Inhibitors -- 3.4 Conclusion -- References -- Chapter 4: Synthesis and Biological Profiles of 4,5-, 1,5-, and 1,2-Diaryl-1H-imidazoles -- 4.1 Introduction -- 4.2 4,5-Diaryl-1H-Imidazoles -- 4.2.1 Synthetic Methods -- 4.2.2 Biological and Pharmacological Properties of 4,5-Diaryl-1H-imidazoles -- 4.2.2.1 Anticancer Agents -- Cytotoxic Compounds -- Cytotoxic Compounds with Antivascular Effects -- Cytotoxic Compounds with Tubulin Inhibitory Activity -- Indoleamine 2,3-Dioxygenase Inhibitors -- 4.2.2.2 Inhibitors of Transforming Growth Factor-β Type 1 Receptor (ALK5) Kinase -- 4.2.2.3 Anti-inflammatory Agents -- Selective Cyclooxygenase-2 (COX-2) Inhibitors -- p38 MAP Kinase Inhibitors -- 4.2.2.4 Inhibitors of Casein Kinase 1δ (CK1δ) and Dual Inhibitors of CK1δ and p38 MAPK -- 4.2.2.5 Acyl-Coenzyme A: Cholesterol O-Acyltransferase (ACAT) Inhibitors -- 4.2.2.6 Cannabinoid CB1 Receptor Inverse Agonists -- 4.2.2.7 15-Lipoxygenase Inhibitors -- 4.2.2.8 Aspartyl Protease Inhibitors -- 4.2.2.9 Antimicrobial Agents -- 4.2.2.10 Glutamine Synthetase Inhibitors -- 4.2.2.11 α-Glucosidase Inhibitors -- 4.2.2.12 B-Raf Kinase Inhibitors -- 4.3 1,5-Diaryl-1H-Imidazoles -- 4.3.1 Synthetic Methods -- 4.3.2 Biological and Pharmacological Properties of 1,5-Diaryl-1H-imidazoles -- 4.3.2.1 Cyclooxygenase-2 (COX-2) Inhibitors -- 4.3.2.2 Cytotoxic Compounds Including Vascular Disrupting Agents -- 4.3.2.3 Antinociceptive Agents -- 4.4 1,2-Diaryl-1H-Imidazoles -- 4.4.1 Synthetic Methods. , 4.4.2 Biological and Pharmacological Properties of 1,2-Diaryl-1H-imidazoles -- 4.4.2.1 Cytotoxic Compounds -- 4.4.2.2 Selective Cyclooxygenase-2 (COX-2) Inhibitors -- 4.4.2.3 Inhibitors of Transforming Growth Factor-β Type 1 Receptor (ALK5) -- 4.4.2.4 Serotonin Reuptake Inhibitors -- 4.4.2.5 Cannabinoid CB1 Receptor Antagonists -- 4.5 Conclusions and Perspectives -- References -- Further Reading -- Chapter 5: Vicinal Diaryl Pyrazole: A Therapeutically Potential Molecular Scaffold -- 5.1 Introduction -- 5.2 Synthesis of Vicinal Diaryl Substituted Pyrazoles -- 5.2.1 Knorr Pyrazole Synthesis -- 5.2.2 1,3-Dipolar Cyclocondensation -- 5.3 Biological Activities of Vicinal Diaryl-Substituted Pyrazoles -- 5.3.1 Clinically Used Drugs -- 5.3.1.1 Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) -- 5.3.1.2 CB1 Antagonists (Anti-Obesity and Smoking Cessation Drugs) -- 5.3.1.3 Antidepressants -- 5.3.2 Molecules with Promising Bioactivities -- 5.3.2.1 Anti-Inflammatory Activity -- 5.3.2.2 Anticancer Activity -- 3,4-Diaryl Pyrazoles -- 4,5-Diaryl Pyrazoles -- 1,5-Diaryl Pyrazoles -- 5.3.2.3 Antibacterial Activity -- 5.3.2.4 Antimycobacterial Activity -- 3,4-Diaryl Pyrazoles -- 1,5-Diaryl Pyrazoles -- 5.3.2.5 CB1R Antagonists -- 5.3.2.6 Hypoglycemic Activity -- 5.3.2.7 Antioxidant Activity -- 5.3.2.8 Antiviral Activity -- 5.4 Conclusion -- References -- Chapter 6: Vicinal Diaryl Triazoles and Tetrazoles -- 6.1 Introduction -- 6.2 Vicinal Diaryl Triazoles and Tetrazoles -- 6.2.1 Synthesis of 1,5- and 4,5-Diaryl-1,2,3-Triazoles -- 6.2.2 Synthesis of 1,5-, 3,4-, and 4,5-Diaryl-1,2,4-Triazoles -- 6.2.3 Synthesis of 1,5-Diaryl Tetrazoles -- 6.3 Biological Spectrum of Vicinal Diaryl Triazoles and Tetrazoles -- 6.3.1 Anticancer Potential of Vicinal Diaryl Triazoles and Tetrazoles -- 6.3.2 Cyclooxygenase Inhibitory Potential of Vicinal Diaryl Triazoles and Tetrazoles. , 6.3.3 Cannabinoid (CB1) Receptors Inhibitory Potential of Vicinal Diaryl Triazoles -- 6.3.4 Vicinal Diaryl Triazole-Containing Compounds having Miscellaneous Activities -- 6.4 Conclusion -- References -- Chapter 7: Synthesis and Biological Activities of Vicinal Diaryl Furans -- 7.1 Synthesis of Vicinal Diaryl Furans -- 7.1.1 Synthesis of Diaryl Furans by Dehydration of 1,4-Diketones -- 7.1.2 Synthesis of Diaryl Furans by Intramolecular Aldol Condensation -- 7.1.3 Synthesis of Diaryl Furanones by Condensation Reaction -- 7.1.4 Synthesis of Diaryl Furan-2,5-Diones From Benzoylformic Acid -- 7.1.5 Synthesis of Diaryl Hydroxyfuranones From Aryl Pyruvates -- 7.2 Vicinal Diaryl Furans as COX-2 Inhibitors -- 7.3 Vicinal Diaryl Furans as Anticancer Agents -- 7.4 Vicinal Diaryl Furans as Antioxidants and Anti-Inflammatory Agents -- 7.5 Vicinal Diaryl Furans as Dual COX-2 and LOX Inhibitors -- 7.6 Vicinal Diaryl Furans as Antifungal Agents -- 7.7 Vicinal Diaryl Furans as NO Donors -- 7.8 Conclusion -- References -- Chapter 8: Vicinal Diaryl Thiazoles and Thiadiazoles -- 8.1 Thiazoles -- 8.1.1 Synthesis of Vicinal Diaryl Thiazoles -- 8.1.1.1 Hantzsch Synthesis -- 8.1.2 Biological Properties of Vicinal Diaryl Thiazoles and Isothiazoles -- 8.1.2.1 Anti-Inflammatory Activity -- 8.1.2.2 Anticancer Activity -- 8.1.2.3 Anti-Alzheimer Activity -- 8.1.2.4 Cholesterol Lowering Agents -- 8.2 Thiazolines -- 8.2.1 Synthesis of Vicinal Diaryl Thiazolines -- 8.2.2 Biological Activities of Vicinal Diaryl Thiazolines -- 8.2.2.1 Anticancer, Analgesic, and Anti-Inflammatory Activities -- 8.3 Thiazolidinones -- 8.3.1 Synthesis of Vicinal Diaryl Thiazolidinones -- 8.3.2 Biological Activity of 1,3-thiazolidin-4-ones -- 8.3.2.1 Antiviral Activity -- 8.3.2.2 Anti-Inflammatory and Analgesic Activities -- 8.3.2.3 Anticancer Activity -- 8.3.2.4 Antibacterial and Antifungal Activities. , 8.4 Thiadiazoles -- 8.4.1 Synthesis of Vicinal Diaryl Thiadiazoles -- 8.4.2 Biological Activity of Vicinal Diaryl Thiadiazoles -- 8.5 Conclusion -- References -- Further Reading -- Chapter 9: Vicinal Diaryl Oxadiazoles, Oxazoles, and Isoxazoles -- 9.1 Oxadiazoles -- 9.1.1 Synthesis of Some Vicinal Diaryl Oxadiazoles -- 9.1.2 Biological Spectrum of Vicinal Diaryl Oxadiazoles -- 9.1.2.1 Anticancer Agents -- 9.1.2.2 COX-2 Inhibitors -- 9.2 Oxazoles -- 9.2.1 Synthesis of Vicinal Diaryl Oxazoles -- 9.2.2 Biological Activities of Vicinal Diaryl Oxazoles -- 9.2.2.1 Anticancer Agents -- 9.2.2.2 COX-2 Inhibitors -- 9.3 Isoxazoles -- 9.3.1 Synthesis of Vicinal Diaryl Isoxazoles -- 9.3.2 Biological Activities of Vicinal Diaryl Isoxazoles -- 9.3.2.1 Anticancer Agents -- 9.3.2.2 COX Inhibitors -- 9.3.2.3 Antiosteoporotic Agents -- 9.4 Conclusion -- References -- Chapter 10: Chemical and Biological Profiles of Vicinal Diaryl-substituted Thiophenes, Imidazolines, Selendiazoles, and Is ... -- 10.1 Thiophenes -- 10.1.1 Synthesis of Vicinal Diaryl-Substituted Thiophenes -- 10.1.2 Biological Profile of Vicinal Diaryl-Substituted Thiophenes -- 10.2 Synthesis and Biological Spectrum of Vicinal Diaryl Imidazolines -- 10.3 Synthesis and Biological Activity of Vicinal Diaryl Heterocycles Containing Selenium -- 10.3.1 Selendiazole -- 10.3.2 Isoselenazole -- 10.4 Conclusion -- References -- Chapter 11: Synthesis and Biological Significance of Six- and Seven-membered Vicinal Diaryl Heterocycles -- 11.1 Introduction -- 11.2 Synthesis of Various Vicinal Diaryl Six-Membered Analogs -- 11.2.1 Synthesis of 1,2-Diarylbenzene (terphenyl) Derivatives -- 11.2.2 Synthesis of 1,6-Diarylpiperidine Derivatives -- 11.2.3 Synthesis of Vicinal 2,3-/5,6-Diarylpyridine Derivatives -- 11.2.4 Synthesis of 4,5-Diarylpyridazinone Derivatives. , 11.2.5 Synthesis of 4,5-Diaryl-3,4-Dihydro-/4,5-Diarylpyrimidines.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    almahu_9949697297702882
    Umfang: 1 online resource (757 pages)
    ISBN: 0-323-50879-0 , 0-323-50878-2
    Anmerkung: Front Cover -- Biomedical Applications of Functionalized Nanomaterials -- Biomedical Applications of Functionalized Nanomaterials -- Copyright -- Contents -- List of Contributors -- Preface -- REFERENCES -- 1 - From the "Magic Bullet" to Advanced Nanomaterials for Active Targeting in Diagnostics and Therapeutics -- 1. PAUL EHRLICH AND THE "MAGIC BULLET" -- 2. PASSIVE VERSUS ACTIVE TARGETING IN CANCER AS MODEL -- 2.1 SUGARS -- 2.2 TRANSFERRIN AND LACTOFERRIN -- 2.3 FOLIC ACID -- 2.4 HYALURONIC ACID -- 2.5 ANTIBODIES -- 2.6 APTAMERS -- 3. EMERGING CHALLENGES AND PERSPECTIVES -- ACKNOWLEDGMENTS -- REFERENCES -- I - Ligand Selection and Functionalization of Nanomaterials -- 2 - Conjugation Chemistry Principles and Surface Functionalization of Nanomaterials -- 1. CONJUGATION CHEMISTRY IN THE CONTEXT OF BIOMEDICAL NANOMATERIALS -- 2. CONJUGATION CHEMISTRY PRINCIPLES -- 2.1 AMINE REACTIONS -- 2.1.1 Amide Bond Formation: Strategies -- 2.1.1.1 Acyl Halides -- 2.1.1.2 Acyl Azides -- 2.1.1.3 Acylimidazoles -- 2.1.1.4 Anhydrides -- 2.1.1.5 O-Acylisourea Using Carbodiimides as Coupling Reagents -- 2.1.1.6 Active Esters -- 2.1.1.7 Staudinger Ligation -- 2.1.1.8 Microwave Activation -- 2.1.2 Phosphoramidate Formation: Strategies -- 2.2 THIOL REACTIONS -- 2.2.1 Thioether Bond Formation: Addition of Thiols at Multiple Bonds of Unsaturated Compounds -- 2.2.2 Disulfide Bridge -- 2.3 HYDROXYL REACTIONS -- 2.3.1 Ester Bond Formation: Strategies -- 2.3.1.1 Acyl Halides, Anhydrides, and O-Acylisoureas via Carbodiimide Coupling -- 2.3.1.2 Mitsunobu Coupling -- 2.3.2 Carbamate Linkage Formation: Strategies -- 2.4 CARBOXYLIC ACID REACTIONS -- 2.5 ALDEHYDES AND KETONES REACTIONS -- 2.6 ALKENES AND ALKYNES -- 2.6.1 Diels-Alder Cycloaddition -- 2.6.2 Click Chemistry -- 2.6.2.1 Huisgen 1,3-Dipolar Azide-Alkyne Cycloadditions -- 2.7 PHOTOCHEMICAL REACTIONS. , 3. SELF-ASSEMBLED MONOLAYERS AS A POWERFUL TOOL FOR THE DESIGN OF SURFACE-ENGINEERED NANOMATERIALS -- 3.1 BIOMOLECULES CONJUGATION ONTO SELF-ASSEMBLED MONOLAYERS VIA COVALENT BINDING -- 3.1.1 Maleimide-Terminated Self-Assembled Monolayers -- 3.1.2 Alkyne or Azide-Terminated Self-Assembled Monolayers ("Click Chemistry") -- 3.1.3 Carboxylic Acid-Terminated Self-Assembled Monolayers -- 3.1.4 Hydroxyl-Terminated Self-Assembled Monolayers -- 3.2 BIOMOLECULES CONJUGATION ON SELF-ASSEMBLED MONOLAYERS VIA AFFINITY BINDING -- 4. CHALLENGES IN (BIO)CONJUGATION -- REFERENCES -- 3 - Phage Display Technology for Selection of Antibody Fragments -- 1. INTRODUCTION -- 2. ANTIBODY PHAGE DISPLAY LIBRARIES -- 2.1 ANTIBODIES FROM NAÏVE AND IMMUNE PHAGE DISPLAY LIBRARIES -- 2.2 ANTIBODIES FROM SYNTHETIC AND SEMISYNTHETIC PHAGE DISPLAY LIBRARIES -- 3. SELECTION AND SCREENING OF ANTIBODY PHAGE DISPLAY LIBRARIES -- 4. ANTIBODY ENGINEERING -- 4.1 AFFINITY MATURATION OF ANTIBODIES -- 4.2 HUMANIZATION OF ANTIBODIES -- 5. CONCLUSIONS AND FUTURE PERSPECTIVES -- REFERENCES -- 4 - Ribosome Display Technology for Selecting Peptide and Protein Ligands -- 1. INTRODUCTION -- 2. EMERGENCE OF IN VITRO DISPLAY TECHNOLOGIES -- 3. BASIC PRINCIPLES AND FEATURES OF RIBOSOME DISPLAY TECHNOLOGY -- 4. SELECTION OF PEPTIDES USING RIBOSOME DISPLAY TECHNOLOGY -- 5. SELECTION OF ANTIBODY FRAGMENTS USING RIBOSOME DISPLAY TECHNOLOGY -- 6. SELECTION OF PROTEINS USING RIBOSOME DISPLAY TECHNOLOGY -- 6.1 CREATION OF STRUCTURAL PROTEINS WITH TARGET-BINDING AFFINITY -- 6.2 IDENTIFICATION OF TARGET PROTEINS THAT BIND TO BIOACTIVE COMPOUNDS -- 7. CONCLUSIONS AND FUTURE PERSPECTIVES -- REFERENCES -- 5 - Engineered Protein Variants for Bioconjugation -- 1. INTRODUCTION -- 2. BIOCONJUGATION ON NATURAL AMINO ACIDS -- 2.1 LYSINE AND AMINE-TARGETED STRATEGIES -- 2.2 CYSTEINE/THIOL-TARGETED STRATEGIES. , 2.3 TYROSINE -- 2.4 OTHER NATURAL AMINO ACIDS -- 3. BIOCONJUGATION ON UNNATURAL AMINO ACIDS -- 3.1 UNNATURAL AMINO ACIDS USED FOR BIOCONJUGATION AND TYPES OF CHEMISTRY INVOLVED -- 3.1.1 Ketone/Aldehyde -- 3.1.2 Azides -- 3.1.3 Alkynes -- 3.1.4 Alkenes/Tetrazines -- 3.2 INCORPORATION OF UNNATURAL AMINO ACIDS IN PEPTIDES/PROTEINS -- 4. AFFINITY-INDUCED BIOCONJUGATION -- 5. CONCLUSIONS AND FUTURE PERSPECTIVES -- ACKNOWLEDGMENTS -- REFERENCES -- 6 - Bioengineered Approaches for Site Orientation of Peptide-Based Ligands of Nanomaterials -- 1. INTRODUCTION -- 2. CONTROL OF PEPTIDE STRUCTURE AND FUNCTIONALITY -- 2.1 NONSPECIFIC ADSORPTION VERSUS COVALENT CONJUGATION -- 2.2 BIOTECHNOLOGICAL APPROACHES -- 2.3 CHEMICAL LIGATION STRATEGIES -- 2.4 NONCLASSICAL CONJUGATION STRATEGIES -- 3. IMPACT OF BOND STRENGTH AND LINKER LENGTH ON BIOCONJUGATION -- 3.1 STREPTAVIDIN-BIOTIN -- 3.2 HIS6-TAG-METAL COORDINATION -- 3.3 THIOL-DISULFIDE/THIOETHER/METAL COORDINATION: THE NATIVE CHEMICAL LIGATION -- 3.4 AZIDE-ALKENE/ALKYNE CYCLOADDITION -- 3.5 HYDRAZINE/AMINE-ALDEHYDE LIGATION -- 3.6 STAUDINGER LIGATION -- 4. IMPACT OF LIGAND DENSITY ON THE TARGETING EFFICIENCY OF NANOCONJUGATES -- 5. PROTEIN CORONA EFFECT AND MINIMIZATION OF NONSPECIFIC INTERACTIONS -- 6. CONCLUSION AND FUTURE PERSPECTIVES -- REFERENCES -- 7 - Nanozymes for Biomedical Sensing Applications: From In Vitro to Living Systems -- 1. INTRODUCTION -- 2. NANOZYMES FOR IN VITRO SENSING -- 2.1 NANOZYME AS PEROXIDASE MIMIC FOR COLORIMETRIC SENSING -- 2.2 NANOZYME AS OXIDASE MIMIC FOR COLORIMETRIC SENSING -- 2.3 NANOZYME COMBINES PEROXIDASE AND OXIDASE MIMICS FOR COLORIMETRIC SENSING -- 2.4 OTHERS BASED ON FLUOROMETRIC, CHEMILUMINESCENT, AND ELECTROCHEMICAL SENSING -- 3. NANOZYME FOR SENSING IN LIVING SYSTEMS -- 4. CONCLUSIONS AND PERSPECTIVES -- ABBREVIATIONS -- ACKNOWLEDGMENTS -- REFERENCES. , 8 - Systematic Evolution of Ligands by Exponential Enrichment for Aptamer Selection -- 1. INTRODUCTION -- 2. POTENTIAL APTAMER TARGETS -- 3. ADVANTAGES OF APTAMERS -- 4. RANDOM OLIGONUCLEOTIDE LIBRARIES -- 5. SYSTEMATIC EVOLUTION OF LIGANDS BY EXPONENTIAL ENRICHMENT -- 5.1 INCUBATION OF RANDOM OLIGONUCLEOTIDE POOL WITH TARGET OF INTEREST -- 5.2 SEPARATION OF UNREACTED OLIGONUCLEOTIDES AND ELUTION OF TARGET-BOUND OLIGONUCLEOTIDES -- 5.3 AMPLIFICATION OF THE ELUTED APTAMER CANDIDATES -- 5.3.1 Single-Stranded DNA Production Methods -- 5.3.2 Enrichment of the Random Oligonucleotide Library Through Iteration -- 6. SEQUENCING OF THE ENRICHED APTAMER POOLS -- 6.1 EVALUATION OF SEQUENCING DATA -- 7. EVALUATION OF APTAMER-BINDING KINETICS -- 8. POST-SYSTEMATIC EVOLUTION OF LIGANDS BY EXPONENTIAL ENRICHMENT MODIFICATIONS -- 8.1 LENGTH MODIFICATION: TRUNCATION -- 8.2 BACKBONE MODIFICATION: SUGAR RING ALTERATION -- 8.3 TAIL MODIFICATION: 3' OR 5' MODIFICATION -- 9. CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- II - Specific Applications of Functionalized Nanomaterials inTherapy and Diagnostics -- 9 - Graphene-Based Nanomaterials in Bioimaging -- 1. INTRODUCTION -- 2. SYNTHESIS OF GRAPHENE-BASED NANOMATERIALS -- 2.1 SYNTHESIS OF GRAPHENE AND ITS DERIVATIVES -- 2.2 IN SITU GROWTH METHOD -- 2.3 BINDING METHOD -- 3. SURFACE FUNCTIONALIZATION OF GRAPHENE-BASED NANOMATERIALS -- 4. GRAPHENE-BASED NANOMATERIALS IN BIOIMAGING -- 4.1 OPTICAL IMAGING -- 4.1.1 Fluorescence Imaging -- 4.1.2 Two-Photon Fluorescence Imaging -- 4.2 RADIONUCLIDE-BASED IMAGING -- 4.3 MAGNETIC RESONANCE IMAGING -- 4.4 PHOTOACOUSTIC IMAGING -- 4.5 RAMAN IMAGING -- 4.6 MULTIMODAL IMAGING -- 5. PROSPECTS AND CHALLENGES -- 6. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 10 - Functionalized Transition Metal Dichalcogenide-Based Nanomaterials for Biomedical Applications -- 1. INTRODUCTION. , 2. BASIC PROPERTIES OF TRANSITION METAL DICHALCOGENIDES -- 3. SYNTHESIS OF TWO-DIMENSIONAL TRANSITION METAL DICHALCOGENIDES -- 3.1 TOP-DOWN APPROACH -- 3.2 BOTTOM-UP APPROACH -- 4. FUNCTIONALIZATION OF TRANSITION METAL DICHALCOGENIDES FOR BIOMEDICAL APPLICATIONS -- 4.1 POLYMERS -- 4.2 SMALL ORGANIC MOLECULES -- 4.3 DEOXYRIBONUCLEIC ACID-BASED FUNCTIONALIZATION -- 4.4 TWO-DIMENSIONAL HETEROSTRUCTURES -- 4.5 METALLIC NANOPARTICLES -- 4.6 NANOPORES -- 5. CONCLUSION AND OUTLOOK -- REFERENCES -- 11 - Intracellular Targeting Using Surface-Modified Gold Nanoparticles -- 1. INTRODUCTION -- 2. NUCLEAR TARGETING OF GOLD NANOPARTICLES -- 3. STRUCTURE OF THE NUCLEAR PORE COMPLEX -- 4. MECHANISM OF NUCLEAR ENTRY AND TRANSPORT -- 5. DIFFERENT SURFACE FUNCTIONALIZING STRATEGIES FOR NUCLEAR TARGETING OF NANOPARTICLES -- 6. IMAGING TECHNIQUES FOR PROBING NUCLEAR TARGETING -- 7. GOLD-BASED NANOSTRUCTURMES FOR IMPROVED CANCER THERAPEUTICS -- 8. RADIATION THERAPY -- 9. ANTICANCER DRUG DELIVERY -- 10. CONCLUSIONS AND FUTURE DIRECTION -- REFERENCES -- 12 - Multifunctional Magnetic Nanoparticles for Theranostic Applications -- 1. INTRODUCTION -- 2. IRON OXIDE NANOPARTICLES: MAGNETIC PROPERTIES AND CHEMICAL SYNTHESIS -- 3. SURFACE MODIFICATION ROUTES FOR THE PREPARATION OF MULTIFUNCTIONAL FE3O4 MAGNETIC NANOPARTICLES -- 3.1 FUNCTIONALIZATION OF MAGNETIC NANOPARTICLES WITH MOLECULAR MONOLAYERS AND POLYMERIC COATINGS -- 3.1.1 Silane Group -- 3.1.2 Catechol -- 3.1.3 Carboxylic Acid -- 3.1.4 Phosphonic Acid -- 3.1.5 Polymeric Coatings -- 3.2 BIOCONJUGATION CHEMISTRY -- 3.2.1 Physical Interactions -- 3.2.2 Carbodiimide Coupling Reaction -- 3.2.3 Click Chemistry -- 3.2.4 Maleimide Coupling -- 4. ORGANIC-MODIFIED MAGNETIC NANOPARTICLES FOR BIOMEDICAL APPLICATIONS -- 4.1 IN VITRO APPLICATIONS: MAGNETIC SEPARATIONS AND BIOSENSING. , 4.2 CONSIDERATIONS ON NANOPARTICLE DESIGN FOR IN VIVO APPLICATIONS.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz