UID:
almatuudk_9923225412802884
Format:
1 online resource (582 pages)
Edition:
1st ed.
ISBN:
9780323957816
,
0323957811
Series Statement:
Elsevier Series on Advanced Ceramic Materials Series
Content:
This book, 'Advanced Ceramics for Membranes,' provides a comprehensive overview of the synthesis methods, performance analysis, and applications of advanced ceramic membranes in water and wastewater treatment. It covers both physical and chemical approaches to membrane synthesis, including techniques such as blending, sputtering, dip coating, and spray coating. The book also delves into the morphological, physical, and chemical analysis of membranes, as well as their permeation performance. It discusses the application of ceramic membranes in the removal of dyes and oily wastewater, highlighting recent developments and future prospects. The book is intended for researchers, practitioners, and students in chemical engineering and membrane technology, aiming to advance their understanding and application of ceramic membranes in environmental engineering.
Note:
Front Cover -- Advanced Ceramics for Photocatalytic Membranes -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Introduction -- 1 A review of the current development of photocatalytic membrane research -- List of abbreviations -- 1.1 Introduction -- 1.1.1 Inorganic-based photocatalytic membranes -- 1.1.1.1 Ceramic membrane classification -- 1.1.1.2 Additional functionalities of a ceramic photocatalytic membrane reactor -- 1.1.1.3 Limitations facing ceramic membranes -- 1.1.2 Polymeric-based photocatalytic membranes -- 1.1.2.1 Challenges facing polymeric photocatalytic membranes -- 1.1.3 Challenges facing photocatalysts -- 1.1.3.1 Doping -- 1.1.3.2 Surface sensitization -- 1.1.3.3 Construction of heterojunctions -- 1.1.3.4 Defect engineering -- 1.1.3.5 Increased electrocatalytic active sites -- 1.1.3.6 Micro/nanostructure -- 1.1.4 Photocatalytic membranes for environmental protection applications -- 1.1.4.1 Photocatalytic membrane performance against dyes -- 1.1.4.2 Photocatalytic membrane performance against pharmaceutical waste -- 1.2 Conclusions and future prospects -- References -- 2 Modeling, simulation, and theory of the mass transfer mechanism of photocatalytic membrane reactor -- List of symbols -- List of abbreviations -- 2.1 Introduction -- 2.2 Formal analysis -- 2.2.1 Batch slurry photoreactor -- 2.2.1.1 Equation for photoreaction rate -- 2.2.1.2 Change of phenol concentration with time -- 2.2.2 Semibatch PMR -- 2.2.2.1 Evaluation of the membrane flux -- 2.2.2.2 Evaluation of phenol concentration in the permeate -- 2.2.2.3 Calculation of change in Vtot,Cphenol,f,Cp,voverall, and Cphenol,p with time -- 2.3 Discussion and evaluation -- 2.3.1 Batch slurry photoreactor -- 2.3.2 Semibatch system -- 2.3.3 Semibatch system without ultraviolet irradiation and without TiO2 nanoparticles -- 2.4 Conclusions -- References.
,
2 Synthesis of photocatalytic membrane via physical approach -- 3 Blending technique -- List of symbols -- List of abbreviations -- 3.1 Introduction -- 3.2 Photocatalytic membranes -- 3.3 Blending technique for photocatalytic membrane fabrication -- 3.3.1 Phase inversion method -- 3.3.2 In situ polymerization -- 3.3.3 Electrospinning -- 3.4 Advantages and limitations of blending techniques -- 3.5 Conclusion -- Acknowledgment -- References -- 4 Sputtering technique -- Key terms and definitions -- List of symbols -- List of abbreviations -- 4.1 Introduction -- 4.2 Fundamental of sputtering technique -- 4.2.1 Reactive sputtering -- 4.2.2 Co-sputtering -- 4.3 Types of sputter deposition -- 4.3.1 Magnetron sputtering technique -- 4.3.1.1 Direct current magnetron sputtering -- 4.3.1.2 Radio frequency magnetron sputtering -- 4.3.1.3 Pulsed direct current magnetron sputtering -- 4.3.1.4 High-power impulse magnetron sputtering -- 4.3.2 Ion beam sputter deposition -- 4.3.3 Electron beam deposition -- 4.3.4 Pulsed laser deposition -- 4.4 Impacts of sputter deposition of photocatalysts on membrane characteristics and performance -- 4.4.1 Ceramic photocatalytic membranes -- 4.4.2 Polymeric photocatalytic membranes -- 4.5 Conclusion -- Acknowledgment -- References -- 5 Dip coating technique -- Nomenclature -- List of symbols -- List of abbreviations -- 5.1 Introduction -- 5.2 Mechanism and theories -- 5.2.1 Draining regime -- 5.2.2 Capillary regime -- 5.3 Sol-gel dip coating -- 5.4 Dip-coated photocatalytic membrane applications -- 5.4.1 Removal of pollutants in water -- 5.4.2 Heavy metal removal -- 5.4.3 Hydrogen production -- 5.4.4 Air purification and gas sensing -- 5.4.5 Inactivation of harmful microorganisms -- 5.5 Conclusion -- Acknowledgment -- References -- 6 Spray coating techniques for fabrication of photocatalytic membrane -- List of symbols.
,
List of abbreviations -- 6.1 Introduction -- 6.2 Basic concept of spray coating technique -- 6.3 Spray coating techniques for photocatalytic membranes fabrication -- 6.3.1 Thermal spray coating -- 6.3.1.1 Plasma spray coating -- 6.3.1.2 Thermo-spraying method -- 6.3.2 Direct spraying method -- 6.3.3 Step-by-step spraying method -- 6.3.4 Spin-spraying method -- 6.3.5 Electro-spraying method -- 6.4 Comparison of various types of spraying methods -- 6.5 Conclusion -- Acknowledgment -- References -- 3 Synthesis of photocatalytic membrane via chemical approach -- 7 Grafting process on photocatalytic membrane -- Nomenclature -- List of symbols -- List of abbreviations -- 7.1 Introduction -- 7.2 Grafting techniques -- 7.2.1 Photo-induced grafting method -- 7.2.2 Plasma grafting method -- 7.2.3 Radiation-induced grafting method -- 7.2.4 Thermal-induced grafting method -- 7.2.5 Atom transfer radical polymerization method -- 7.2.6 Ring-opening polymerization method -- 7.3 Grafted-photodegradation performance -- 7.4 Conclusion -- Acknowledgment -- References -- 8 Hydrothermal and solvothermal methods -- 8.1 Introduction -- 8.2 Principle and mechanism of hydrothermal and solvothermal method -- 8.2.1 Factors affecting the hydrothermal and solvothermal synthesis for photocatalytic application -- 8.2.1.1 Effect of hydrothermal duration -- 8.2.1.2 Effect of hydrothermal temperature -- 8.2.1.3 Effect of pH of the reaction medium -- 8.2.1.4 Effect of solvent -- 8.2.1.5 Effect of calcination temperature -- 8.3 Recent advances in hydrothermal and solvothermal-based polymer and ceramic membrane for photocatalytic application -- 8.3.1 Ceramic-based photocatalytic membrane -- 8.4 Challenges -- 8.5 Conclusion -- References -- 9 Electroless deposition of zinc oxide for photocatalytic membrane -- List of symbols -- List of abbreviations -- 9.1 Introduction.
,
9.2 Preparation for electroless zinc oxide deposition -- 9.2.1 Surface preparation -- 9.2.1.1 Substrate cleaning and etching -- 9.2.1.2 Sn-Pd activation -- 9.2.1.2.1 Effect of tin (II) chloride and hydrochloric acid concentration -- 9.2.1.2.2 Effect of rinsing condition after sensitization -- 9.2.1.2.3 Effect of Palladium Chloride Concentration -- 9.2.2 Deposition process -- 9.2.2.1 Effect of zinc salt concentration -- 9.2.2.2 Effect of reducing agent concentration -- 9.2.2.3 Effect of deposition temperature -- 9.3 Impact of type of ZnO deposition on photocatalytic activity -- 9.4 Conclusion -- Acknowledgement -- References -- 4 Characterization and performance analysis of photocatalytic membrane -- 10 Morphological analysis of photocatalytic membrane (SEM, FESEM, TEM) -- List of symbols -- List of abbreviations -- 10.1 Introduction -- 10.2 Scanning electron microscopy analysis -- 10.3 Field emission electron microscopy analysis -- 10.4 Transmission electron microscopy analysis -- 10.4.1 Flat-sheet membrane -- 10.4.2 Nanofiber -- 10.4.3 Hollow fiber membrane -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Physical analysis of photocatalytic membrane (AFM, contact angle, pore size, and porosity) -- List of abbreviations -- 11.1 Introduction -- 11.2 Physical properties and hydrophilicity of the membranes -- 11.2.1 Roughness surface characteristics of membranes -- 11.2.1.1 Semiconductor materials for bulk modification of membranes -- 11.2.1.2 Semiconductor materials for membrane surface modification -- 11.2.2 Membrane surface hydrophilicity -- 11.2.3 Membrane porosity and pore size -- 11.3 Conclusions and future perspectives -- References -- 12 Chemical analysis of photocatalytic membrane (FTIR, XRD, UV-vis/optical, XPS, and zeta potential) -- List of symbols -- List of abbreviations -- 12.1 Introduction.
,
12.2 Fourier transforms infrared spectroscopy -- 12.2.1 Sample preparation methods -- 12.2.2 Measurement techniques -- 12.3 X-ray diffraction spectroscopy -- 12.4 Ultraviolet-visible spectroscopy -- 12.5 X-ray photoelectron spectroscopy -- 12.6 Zeta potential -- 12.7 Challenges and future outlooks -- Acknowledgment -- References -- 13 Permeation performance analysis of advanced ceramic and polymeric-based photocatalytic membrane (flux and rejection) -- List of abbreviations -- 13.1 Introduction -- 13.2 Photocatalytic membrane materials for water treatment -- 13.2.1 Photocatalysis and membrane technologies -- 13.2.2 Nanomaterial-based photocatalytic membrane performance -- 13.2.3 Polymeric versus ceramic photocatalytic membranes and their performance (flux and rejection) -- 13.3 Polymeric photocatalytic hybrid membranes and their permeation performance -- 13.3.1 Photocatalytic polymer membranes based on TiO2 -- 13.3.2 TiO2 modification -- 13.4 Ceramic photocatalytic hybrid membranes and their permeation performance -- 13.4.1 Ceramic photocatalytic membranes -- 13.4.2 Nanomaterial-based ceramic photocatalytic membranes -- 13.4.3 Photocatalysts supported in ceramic materials -- 13.4.3.1 TiO2-photocatalysts supported in ceramic materials -- 13.4.3.2 TiO2 modification -- 13.4.4 Microstructure and pure water flux for photocatalytic ceramic membranes -- 13.4.5 Dual-layered hollow fiber membranes -- 13.5 Conclusions and perspectives -- References -- 14 Photodegradation performance of photocatalytic membrane -- Key terms and definitions -- List of symbols -- List of abbreviations -- 14.1 Introduction -- 14.2 Effect of light -- 14.2.1 Natural light sources -- 14.2.2 Artificial light sources -- 14.2.3 Light intensity -- 14.3 Effect of photocatalyst dosage -- 14.4 Effect of the concentration of substrate -- 14.5 Effect of pH and temperature.
,
14.5.1 Effect of solution pH on photodegradation of dye.
Additional Edition:
ISBN 9780323954181
Additional Edition:
ISBN 0323954189
Language:
English
Bookmarklink