Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almahu_9949568765502882
    Format: 1 online resource (147 pages)
    Edition: 1st ed.
    ISBN: 9783031281549
    Series Statement: SpringerBriefs in Mathematical Physics Series ; v.48
    Note: Intro -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 Results -- 1.3 Structure -- 2 2d Sigma-Models and DAHA -- 2.1 Higgs Bundles and Flat Connections -- 2.2 DAHA of Rank One and Its Spherical Algebra -- 2.3 Canonical Coisotropic Branes in A-models -- 2.3.1 Spherical DAHA as the Algebra of (mathfrakBcc,mathfrakBcc)-Strings -- 2.4 Lagrangian A-Branes and Modules of mathscrOq(mathfrakX) -- 2.5 (A,B,A)-Branes for Polynomial Representations -- 2.6 Branes with Compact Supports and Finite-Dimensional Representations: Object Matching -- 2.6.1 Generic Fibers of the Hitchin Fibration -- 2.6.2 Irreducible Components in Singular Fibers of Type I2 -- 2.6.3 Moduli Space of G-Bundles -- 2.6.4 Exceptional Divisors -- 2.7 Bound States of Branes and Short Exact Sequences: Morphism Matching -- 2.7.1 At Singular Fiber of Type I2 -- 2.7.2 At Global Nilpotent Cone of Type I0* -- 3 3d Theories and Modularity -- 3.1 DAHA and Modularity -- 3.1.1 SU(2): Refined Chern-Simons and TQFT Associated to Argyres-Douglas Theory -- 3.1.2 SU(N): Higher Rank Generalization -- 3.2 Relation to Skein Modules and MTC[M3] -- 4 4d Theories, Fivebranes, and M-Theory -- 4.1 Coulomb Branches of 4d N=2* Theories of Rank One -- 4.2 Algebra of Line Operators -- 4.3 Including Surface Operator -- Appendix A Glossary of Symbols -- Appendix B Basics of DAHA -- B.1 DAHA -- B.1.1 Double Affine Braid Group and Double Affine Weyl Group -- B.1.2 PBW Theorem for DAHA -- B.1.3 Spherical Subalgebra -- B.1.4 Braid Group and SL(2,mathbbZ) Action -- B.1.5 Polynomial Representation of DAHA -- B.1.6 Symmetric Bilinear Form -- B.1.7 Degenerations -- B.2 DAHA of Type A1 -- B.2.1 Polynomial Representation -- B.2.2 Functional Representation -- B.2.3 Trigonometric Cherednik Algebra of Type A1 -- B.2.4 Rational Cherednik Algebra of Type A1 -- Appendix C Quantum Torus Algebra. , C.1 Representations of Quantum Torus Algebra -- C.1.1 Unitary Representations -- C.1.2 Non-unitary Representations -- C.1.3 Geometric Viewpoint -- C.2 Branes for Quantum Torus Algebra -- C.2.1 Cyclic Representations -- C.2.2 Polynomial Representations -- C.3 Symmetrized Quantum Torus -- C.3.1 Representation Theory -- C.3.2 Corresponding Branes -- Appendix D 3d mathcalN=4 Theories and Cherednik Algebras -- D.1 Coulomb Branches of 3d mathcalN=4 Theories -- D.2 3d mathcalN=4 Coulomb Branches and Cherednik Algebras -- Appendix References.
    Additional Edition: Print version: Gukov, Sergei Branes and DAHA Representations Cham : Springer,c2023 ISBN 9783031281532
    Language: English
    Keywords: Electronic books. ; Electronic books.
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_9959186310102883
    Format: 1 online resource (XXXI, 441 p. 151 illus.)
    Edition: Online edition Springer Lecture Notes Archive ; 041142-5
    ISBN: 3-540-39315-3
    Series Statement: Lecture Notes in Control and Information Sciences, 187
    Content: This book comprises the proceedings of one of the most important international conferences in robotics. The individual contributions focus primarily on mechanical engineering and control and are unique in describing work completed in Eastern and Central European Countries and the former USSR. The annual symposia play an important role in the development of the theory and practice of manipulators, walking machines, robots, and the papers present significant contributions from experts in the field. The connection between biomechanics, robotics, and other related sciences is examined, as well as the biomechanical aspects currently applied in the theory and practice of manipulators and robots. The book is divided into sections covering mechanics, synthesis and design, sensing, control of motion, mobile robots and walking machines, application and performance evaluation.
    Note: On micromechanisms and their researches and developments -- New manipulators with simple inverse kinematics -- The semigraphical determination of all real inverse kinematic solutions of general six-revolute manipulators -- An approach to symbolic kinematics of multiloop robot mechanisms -- Analytical form solution of the direct kinematics of a 4–4 fully in-parallel actuated six degree-of-freedom mechanism -- Characterization of redundancy in spatial closed kinematic chains -- Finding collision-free trajectory for redundant manipulator by local information available -- Some effects of the joint's drive systems torsional compliances and the velocity profiles on the 5R manipulator's dynamic accuracy -- Comparing structures of stiffness matrices using invariants -- Kineto-static analysis of cooperative robot manipulators achieving dexterous configurations -- Geometrical decomposition of robot elasticity -- A life devoted to TMM and robotics: Professor M. S. konstantinov -- Multi-criteria optimization of robots for planar trajectory operations -- Planning motions of robotic systems subject to force and friction constraints with an application to a robotic climber -- Feasibility of trajectories in cluttered environments and automatic positioning of the robot -- A new scheme for hybrid force-position control -- An adaptive implicit hybrid position force control of robots: Implementation problems -- Parallel computing of symbolic robot models and control laws: Theory and application on advanced multiprocessor architectures -- Decoupling and suboptimal control for robots -- ‘Dynamic’ multi-functional tactile sensing -- A concurrent interpreted language, including constraints, for robot programming -- Flexible controller for robots equipped with sensors -- A three degree-of-freedom in-parallel actuated manipulator -- Planning workpiece grasp points for cooperating robot movements -- Full envelope dexterous manipulation -- Multi-degree of freedom spherical ultrasonic motor -- A spatial fully-parallel manipulator -- A new approach to the modelling of power grasp -- Design of a carbon fiber robot: Architectural choices and design balancing -- A new actuation system for high-performance torque-controlled manipulators -- Real time kinematics for a 6 dof telerobotic joystick -- Structural and kinematic synthesis of multi — Degree of freedom high-class manipulation devices -- A control scheme for biped walking without impacts -- Methods of evaluation of the power developed in a man's leg during normal walking -- Modelling upper extremity muscles effort under static working conditions -- Development of a coupled tendon drive manipulator with seven degrees-of-freedom -- A basic concept of super rabbit -- Dynamics and control of 6-legged walking machines -- Robotics training station — A new application area in robotics -- Interactive planning using graphical simulation for robot task programming -- Supervision and sensing in flexible assembly -- The robotic milking of cows -- Telemanipulation control of a robotic hand with cooperatingfingers by means of telepresence with a hybrid virtual-real structure -- Control of robot-based assembly cell -- From the round table discussion: The role of dynamic control in contemporary and tomorrow's robotics.
    In: Springer eBooks
    Additional Edition: ISBN 0-387-19834-2
    Additional Edition: ISBN 3-540-19834-2
    Language: English
    Keywords: Konferenzschrift
    URL: Volltext  (lizenzpflichtig)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    almahu_9949704582602882
    Format: 1 online resource (354 pages)
    Edition: First edition.
    ISBN: 0-443-19222-7
    Note: Front Cover -- ADVANCES IN NATURAL GAS: FORMATION, PROCESSING, AND APPLICATIONS -- ADVANCES IN NATURAL GAS: FORMATION, PROCESSING, AND APPLICATIONS Natural Gas Dehydration -- Copyright -- Contents -- Contributors -- About the editors -- Reviewer acknowledgments -- I - Natural gas dehydration concepts -- 1 - Introduction to natural gas dehydration methods and technologies -- 1. Introduction -- 2. Determination of natural gas water contents -- 3. Natural gas dehydration techniques -- 3.1 Glycol-based natural gas dehydration -- 3.2 Adsorbent-based natural gas dehydration -- 3.2.1 Regenerable adsorbents -- 3.2.2 Consumable desiccants -- 3.3 Membrane-based natural gas dehydration -- 3.4 Natural gas dehydration with ionic liquids and deep eutectic solvents -- 3.5 Supersonic separator-based natural gas dehydration -- 3.5.1 Twister BV separator -- 3.5.2 3S separator -- 3.6 Comparison of dehydration techniques -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 2 - Challenges of wet natural gas -- 1. Introduction -- 2. Principles and procedures of wet gas and its impact -- 2.1 Retrograde condensation -- 2.2 Wet gas production -- 2.3 Associated gas production -- 2.4 Market specification and economics -- 3. Wet gas processes and challanges -- 3.1 Hydrate formation -- 3.2 Corrosion and damage to equipment -- 3.3 Inaccurate sampling and metering errors -- 3.4 Slugging -- 3.5 Liquid loading, hold-up, and increase in backpressure -- 3.6 High installation and operational costs -- 4. Current applications and cases -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 3 - Environmental challenges of natural gas dehydration technologies -- 1. Introduction -- 2. Natural gas dehydration technologies -- 2.1 Glycol dehydration -- 2.1.1 Conventional TEG dehydration process. , 2.1.2 Enhanced TEG dehydration process -- 2.1.3 Operational problems of glycol dehydrators -- 2.1.4 Environmental challenges of using glycol dehydration technique -- 2.2 Solid desiccant (adsorption) dehydration technologies -- 2.2.1 Molecular sieves -- 2.2.2 Silica gels -- 2.2.3 Activated alumina -- 2.2.4 Environmental challenges of using solid desiccants' (adsorption) dehydration technique -- 2.3 Membrane separation natural gas dehydration technology -- 2.3.1 Environment implication of using membrane dehydration technology -- 2.4 Dehydration by cooling technique -- 2.4.1 Environment implication of using dehydration by cooling technology -- 3. Current applications and cases -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- II - Absorption techniques for natural gas dehydration -- 4 - Natural gas dehydration using glycol absorbents -- 1. Introduction -- 2. Glycol absorbents in natural gas dehydration -- 2.1 Properties of glycol absorbents -- 2.2 Study on phase equilibria -- 2.2.1 Gas solubility in water and glycols -- 2.2.2 Phase equilibria for glycol-water systems -- 3. Natural gas dehydration process via glycols -- 3.1 Process description -- 3.2 Equipment conditions -- 3.2.1 Absorber -- 3.2.2 Stripper column -- 3.2.3 Reboiler -- 4. Natural gas dehydration with TEG using process simulation -- 4.1 Thermodynamic model selection -- 4.2 A simplified natural gas dehydration study -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 5 - Natural gas dehydration using ionic liquids -- 1. Introduction -- 2. Principles of natural gas dehydration with ionic liquids -- 2.1 The screening of ILs for natural gas dehydration -- 2.2 Study on phase equilibria -- 2.2.1 Methane solubility in ILs -- 2.2.2 Vapor pressure of mixtures of ILs and water -- 2.3 Natural gas dehydration experiment. , 2.4 Mechanism insight into dehydration process -- 3. Natural gas dehydration processes with ionic liquids -- 4. Current applications and cases -- 4.1 Case 1: Natural gas dehydration with pure IL -- 4.2 Case 2: Natural gas dehydration with IL-based mixed solvents -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 6 - Deep eutectic solvents for natural gas dehydration -- 1. Introduction -- 2. Overview of natural gas treatment plants -- 3. Overview of conventional dehydration methods -- 3.1 Absorption processes -- 3.2 Adsorption processes -- 3.3 Membrane processes -- 4. Dehydration processes using DESs -- 5. Comparison of dehydration processes -- 6. Safety and environmental considerations -- 7. Conclusions and future outlooks -- Abbreviations and symbols -- References -- III - Adsorption techniques for natural gas dehydration -- 7 . Swing processes for natural gas dehydration: Pressure, thermal, vacuum, and mixed swing processes -- 1. Introduction -- 2. Methods for natural gas dehydration -- 2.1 Temperature swing adsorption (TSA) -- 2.2 Pressure swing adsorption (PSA) -- 2.3 Pressure-vacuum swing adsorption (PVSA) -- 2.4 Pressure-temperature swing adsorption (PTSA) -- 3. Comparative study on PSA, TSA, and PVSA -- 4. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 8 - Carbonaceous sorbents for natural gas dehydration -- 1. Introduction -- 2. Challenges posed by water associated with natural gas and natural gas dehydration technologies -- 2.1 Water in natural gas (hydrate formation) -- 2.2 Low firing/poor heating value -- 3. NG-dehydration technologies -- 3.1 NG dehydration with carbonaceous solid desiccants -- 3.2 NG dehydration with triethylene glycol -- 3.3 NG dehydration via membrane -- 4. Fundamentals of carbonaceous sorbent-water interactions in NG dehydration and sorbent regeneration. , 5. Current applications and cases -- 6. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 9 - Zeolite and molecular sieves for natural gas dehydration -- 1. Introduction -- 2. Absorption by liquid for natural gas dehydration -- 3. Adsorption by solid desiccant for natural gas dehydration -- 3.1 Properties of solid desiccants -- 3.2 Types of solid desiccants -- 3.2.1 Activated alumina -- 3.2.2 Silica gel -- 3.2.3 Molecular sieves -- 3.2.3.1 Zeolites -- 3.2.4 Carbon adsorbent -- 4. Condensation (direct cooling) for natural gas dehydration -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- 10 - Metal-oxide adsorbents and mesoporous silica for natural gas dehydration -- 1. Introduction -- 2. Adsorbent materials -- 3. Mesoporous silica -- 3.1 Mesoporous silica in the natural gas dehydration -- 4. MOFs -- 4.1 MOFs in the natural gas dehydration -- 5. Conclusion and future outlooks -- Abbreviations and symbols -- References -- IV - Membrane technology for natural gas dehydration -- 11 - Hollow-fiber membranes for natural gas dehydration -- 1. Introduction -- 1.1 Natural gas -- 2. Natural gas dehydration -- 3. Membrane separation technology -- 3.1 Limitations of membrane process in NG dehydration -- 3.2 Mechanism of gas and vapor transportation in membranes -- 4. Basic aspects of hollow fiber membrane -- 4.1 Mechanism of phase inversion during the creation of hollow fiber membranes -- 4.2 Types of hollow fibers and their preparation methods -- 4.2.1 Hollow fiber membranes derived from organic and inorganic materials -- 4.2.2 Composite hollow fiber membranes -- 5. Conclusions and future outlooks -- Abbreviations and symbols -- References -- 12 - Polymeric membranes for natural gas dehydration -- 1. Introduction -- 2. Principles of gas separation via membranes. , 3. Enhancing efficiency in gas dehydration via membranes -- 4. Current applications and cases -- 5. Conclusions and future outlooks -- Abbreviations and symbols -- References -- V - Other technologies for natural gas dehydration -- 13 - Supersonic technology for natural gas dehydration -- 1. Introduction -- 1.1 Natural gas -- 1.1.1 Natural gas applications -- 1.1.2 Natural gas properties and relevant use -- 2. Supersonic technologies for natural gas dehydration -- 2.1 Supersonic technology process -- 2.2 Supersonic separation components -- 2.3 Supersonic separation process -- 2.4 Supersonic separator -- 3. Supersonic separator technologies -- 3.1 Twister I vs. 3S nozzle -- 3.2 Supersonic separator design characteristics -- 3.3 Advantage of using supersonic technologies -- 4. Supersonic separator designs -- 4.1 Garrett design -- 4.2 Keisuke design -- 4.3 Van Holten design -- 4.4 Borissov design -- 4.5 Wen design -- 4.6 Beijing University of Technology's design -- 5. Design comparison -- 6. Applications -- 6.1 Natural gas water and hydrocarbon dewpoints -- 6.2 Natural gas liquefaction -- 6.3 Natural gas sweetening -- 6.4 Purification -- 6.5 Carbon capture -- 6.6 Subsea -- 6.7 Natural gas liquefaction -- 6.8 Other miscellaneous applications -- 7. Conclusion and future outlooks -- Abbreviations and symbols -- References -- Index -- Back Cover.
    Additional Edition: ISBN 0-443-19221-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    almahu_9949225719702882
    Format: 1 online resource (xxviii, 926 pages) : , illustrations.
    Edition: 1st ed.
    ISBN: 3-446-43373-2
    Series Statement: Progress in polymer processing
    Content: Surveys the state of the science and technology of the injection molding process. The book presents a comprehensive, balanced mix of practical and theoretical aspects for a wide range of injection molding applications. The authors are experts and leaders in their respective areas of specialization in the injection molding field.
    Note: Intro -- Preface -- Part I: Background and Overview -- 1 Injection Molding: Introduction and General Background -- 1.1 Scope -- 1.2 Introduction -- 1.2.1 Polymer Processing -- 1.2.1.1 The Plastics Processing System -- 1.2.1.2 Processing Properties of Polymers and Their Compounds -- 1.2.2 Injection Molding -- 1.2.2.1 Introduction -- 1.2.2.2 General Injection Molding Process Sequence -- 1.3 Injection Molding Process Characteritics -- 1.3.1 The Plastication Stage -- 1.3.1.1 The Melting Zone -- 1.3.1.2 Temperature distribution in the nozzle -- 1.3.2 The Filling Stage -- 1.3.2.1 Flow Lines and Weld Lines -- 1.3.2.2 Jetting -- 1.3.2.3 Fountain Flow -- 1.3.3 Heat Transfer in the Cavity -- 1.3.3.1 Measurement of Temperature Distribution in the Cavity -- 1.3.3.2 Numerical Simulation of Heat Transfer in Injection Molding -- 1.3.3.3 Crystallization Kinetics -- 1.4 Microstructure of Injection Molded Parts -- 1.4.1 Crystallinity -- 1.4.1.1 Effect of Crystallinity and Orientation on Birefringence and Tensile Modulus -- 1.4.2 Morphology -- 1.4.3 Residual Stresses -- 1.4.3.1 Calculation of Residual Stresses -- 1.4.4 Microstructure of Fiber Reinforced Thermoplastics -- 1.4.4.1 Fiber Length and Concentration Distributions -- 1.4.4.2 Matrix Crystallinity -- 1.4.4.3 Fiber and Matrix Orientation -- 1.4.4.4 Composites Incorporating Conductive Fibers -- 1.4.5 Distribution of Cure in Thermosets -- 1.5 Properties of Injection Molding Compounds and Products -- Symbol List -- References -- Part II: Injection Molding Machinery and Systems -- 2 Injection Molding Machines, Tools, and Processes -- 2.1 Injection Molding Machines -- 2.1.1 Types of Injection Molding Machines -- 2.1.1.1 Horizontal Injection Molding Machines -- 2.1.1.2 Vertical Injection Molding Machines -- 2.1.1.3 Hybrid Injection Molding Machine Composed of Vertical and Horizontal Units. , 2.1.2 Screw and Barrel Unit -- 2.1.2.1 In-Line Screw Type Injection Molding Machines -- 2.1.2.2 Screw Design for Injection Molding Machines -- 2.1.2.3 Barrels for Injection Molding Machines -- 2.1.3 Driving Principles -- 2.1.3.1 Hydraulic Injection Molding Machines -- 2.1.3.2 Electric Injection Molding Machines -- 2.1.3.2.1 Control Systems for an Electric Injection Molding Machine -- 2.1.3.2.2 Injection Mechanism for an Electric Machine -- 2.1.3.2.3 Nozzle Contact Mechanism for an Electric Injection Molding Machine -- 2.1.3.2.4 Electric Clamping Mechanism -- 2.1.3.2.5 Electric Ejection Mechanism -- 2.1.3.3 Man-Machine Interface and Communication Control -- 2.1.3.3.1 Man-Machine Interface for an Injection Molding Machine -- 2.1.3.3.2 Communication Control -- 2.1.4 Process Control -- 2.1.4.1 Control of the Filling Process -- 2.1.4.2 Control of the Hold-Pressure Switching Process -- 2.1.4.3 Control of the Hold-Pressure Process -- 2.1.4.4 Control of the Metering Process -- 2.1.4.5 Control of the Mold Opening/Closing Process -- 2.1.4.6 Temperature Control of Each Barrel And Nozzle -- 2.1.4.7 Control of the Injection Compression Process -- 2.2 Molds for Injection Molding -- 2.2.1 Functions of Mold Components -- 2.2.2 Classification of Molds -- 2.2.2.1 Cold Runner Mold Systems -- 2.2.2.1.1 2-Plate Molds -- 2.2.2.1.2 3-Plate Molds -- 2.2.2.2 Hot Runner Mold Systems -- 2.2.3 Sprue, Runners, and Gates -- 2.2.3.1 Runners -- 2.2.3.2 Gates -- 2.2.3.3 Gate Balance -- 2.2.3.4 Air Vents -- 2.2.4 Ejection Mechanisms -- 2.2.4.1 Ejector Pins -- 2.2.4.2 Sleeve and a Stripper Plate -- 2.2.4.3 Air Ejector -- 2.2.5 Mold Cooling -- 2.2.6 Temperature Control Methods and Mechanisms -- 2.2.6.1 Liquid Medium Control -- 2.2.6.2 Electric Heater Control -- 2.3 Injection Molding Processes -- 2.3.1 In-Mold Build-Up Injection Molding (DSI) -- 2.3.2 Conventional Processes. , 2.3.3 DSI Molding Process -- 2.3.3.1 Injection Welding Mechanism -- 2.3.3.2 Advantages of the DSI molding process -- 2.3.3.3 Product Examples of the DSI Molding Process -- 2.3.4 Multi-Material Injection Molding -- 2.3.4.1 Multi-Material Molding Techniques -- 2.3.4.2 Application Examples for the M‑DSI Molding Process -- 2.3.5 Super-High Speed Injection Molding -- 2.3.5.1 Effects of High-Speed Injection -- 2.3.5.2 High-Speed Injection Molding Machines -- 2.3.5.3 Example of Ultra High-Speed Injection Molding -- 2.3.6 In-Mold Coating Injection Molding -- 2.3.6.1 Surface Decoration Techniques -- 2.3.6.2 Simultaneous Transfer Molding -- 2.3.7 Insert Injection Molding Process -- 2.3.7.1 Insert Molding Machines -- 2.3.8 Sandwich Injection Molding -- 2.3.8.1 Process Outline -- 2.3.8.2 Construction of Sandwich Nozzles -- 2.3.8.3 Features of Sandwich Molding -- 2.3.9 Plastic Magnet Injection Molding -- 2.3.9.1 Molding System and Magnetic Field Generating Methods -- 2.3.9.2 Important Issues with Injection Molding of Plastic Magnets -- 2.3.9.3 Key Points of Mold Design for Plastic Magnets -- 2.3.10 Long-Glass Fiber Reinforced Injection Molding -- 2.3.10.1 Long Fiber Reinforced Plastics Injection Molding -- 2.3.10.2 Properties of Long Glass Fiber (GF) Reinforced Plastics -- 2.3.10.3 Applications of Long-Fiber Molding to Large-Size Products -- References -- 3 The Plasticating System for Injection Molding Machines -- 3.1 Introduction -- 3.2 The Plasticating System -- 3.3 Operation of Plasticating Screw Machines -- 3.3.1 Proper Operation -- 3.4 The Melting Process -- 3.5 Basic Screw Design -- 3.5.1 PS Injection Molding Case Study -- 3.6 High-Performance Screw Designs -- 3.7 Secondary Mixing Processes and Devices -- 3.7.1 Dynamic Mixers -- 3.8 Screw Design Issues Causing Resin Degradation -- 3.9 Non-Return Valve -- Nomenclature -- References. , 4 Non-Conventional Injection Molds -- 4.1 Introduction -- 4.2 Molds for Multi-Material Molding -- 4.2.1 Co-Injection -- 4.2.2 Overmolding -- 4.3 Injection Units, Layout, and Runner System -- 4.3.1 Equipment -- 4.3.2 Hot Runners -- 4.3.3 Material Interactions -- 4.4 Molds for Injection-Welding -- 4.5 Molds for Backmolding -- 4.5.1 Molding over Textiles or Fabrics -- 4.5.2 In-Mold Labeling -- 4.5.3 In-Mold Decoration -- References -- 5 Gas Assisted Injection Molding -- 5.1 Introduction -- 5.1.1 Gas Assisted Injection Molding -- 5.1.2 Advantages and Limitations of GAIM -- 5.1.3 Materials for GAIM -- 5.2 Molding Equipment and Process -- 5.2.1 Gas Injection Unit and Injection Nozzle -- 5.2.2 Gas Injection into the Part -- 5.2.3 Gas Nozzle -- 5.2.4 Pressure Development during the Molding Process -- 5.2.5 Gas Penetration Behavior in Molded Parts -- 5.2.6 Gas Venting and Recycling -- 5.2.7 Moldability Diagram for GAIM -- 5.3 Process Modeling -- 5.4 Part/Mold Designs and Molding Guidelines -- 5.4.1 Gas Channel Geometry -- 5.4.2 Gas Channel Layout -- 5.4.3 Effect of Gravity -- 5.4.4 Residual Wall Thickness Distribution -- 5.4.5 Gas Dissolution into the Polymer -- 5.4.6 Gas Fingering -- 5.4.7 Unstable Gas Penetrations -- 5.4.8 Weld Lines Caused by the Flow-Lead Effect -- 5.4.9 Molding of Fiber Reinforced Materials -- 5.5 Concluding Remarks -- List of symbols -- References -- 6 Water Injection Techniques (WIT) -- 6.1 Introduction -- 6.2 Processing Technology -- 6.2.1 Course of Process -- 6.2.2 Process Variants -- 6.2.2.1 Short-Shot Process -- 6.2.2.2 Full-Shot Process -- 6.2.2.3 Full-Shot Process with Overspill -- 6.2.2.4 Melt Push Back Process -- 6.2.2.5 Core Pulling Process -- 6.2.2.6 Rinsing/Flushing Process -- 6.2.3 Comparison between GAIM and WIT -- 6.2.3.1 Limitations of GAIM -- 6.2.3.2 Cycle Times -- 6.2.3.3 Part Properties. , 6.2.3.3.1 Residual Wall Thicknesses (RWT) -- 6.2.3.3.2 Shrinkage/Warpage -- 6.2.3.3.3 Fluid-Sided Surface Qualities -- 6.2.3.3.4 Typical Part Defects -- 6.3 Plant and Injector Technology -- 6.3.1 Concepts and Operation Technology for Water Pressure Generating Units -- 6.3.2 Injector Technology for Water Injection Technique -- 6.3.2.1 Demands on WIT Injectors -- 6.3.3 Classification and Presentation of Different WIT-Injectors -- 6.3.3.1 Operating Method -- 6.3.3.2 Operating Direction -- 6.3.3.3 Alignment in the Mold -- 6.3.4 General Design Remarks for WIT Injectors -- 6.3.4.1 Excellent Process Reliability -- 6.3.4.2 Specific Controllability -- 6.4 WIT Compatible Part Design -- 6.4.1 Injector Embedding -- 6.4.2 General Design Guidelines for WIT Articles -- 6.4.3 Tubular Articles -- 6.4.3.1 Cross Sections -- 6.4.3.2 Aspect Ratio -- 6.4.3.3 Curves and Redirections -- 6.4.3.4 Change of Diameter -- 6.4.4 Compact Parts with Integrated Thick-Walled Sections -- List of Abbreviations and Symbols -- References -- Part III: Injection Molding of Complex Materials -- 7 Flow Induced Fiber Micro-Structure in Injection Molding of Fiber Reinforced Materials -- 7.1 Introduction -- 7.2 Observations -- 7.2.1 Fiber Length Distribution -- 7.2.2 Fiber Concentration -- 7.2.3 Fiber Orientation -- 7.2.3.1 Orientation Mechanisms -- 7.2.3.2 Qualitative Observations -- 7.2.3.3 Quantification Tools: Orientation Distribution Function, Orientation Tensors -- 7.2.3.4 Experimental Methods -- 7.2.3.5 Results -- 7.3 Calculation of Fiber Orientation -- 7.3.1 Orientation Models -- 7.3.1.1 The Standard Model -- 7.3.1.2 Choice of the Interaction Coefficient and the Closure Approximation -- 7.3.1.2.1 Value of the Interaction Coefficient -- 7.3.1.2.2 The Closure Approximation Issue -- 7.3.1.3 Discussion of the Standard Model -- 7.3.1.4 Application to Injection Molding. , 7.3.2 Rheological Models.
    Additional Edition: ISBN 3-446-41685-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam ; : Elsevier,
    UID:
    almahu_9949225716502882
    Format: 1 online resource (478 p.)
    ISBN: 1-299-28459-0 , 0-444-59711-5
    Series Statement: Composite materials series ; 1
    Content: Providing a useful summary of current knowledge on the friction and wear properties of composite materials, this book fills the gap between publications on fundamental principles of tribology and those on the friction and wear behavior of metals and polymers. Detailed coverage is given of: the fundamental aspects of tribology in general and polymer composites in particular; the effects of the microstructure of composites on friction and wear behavior under different external loading conditions; and the problem of the control of friction and wear behavior in practical situations. Although emp
    Note: Description based upon print version of record. , Front Cover; Friction and Wear of Polymer Composites; Copyright Page; Preface; References; Table of Contents; Chapter 1. Introduction to Friction and Wear; Abstract; 1. Friction and wear: sub-areas of tribology; 2. Terminology; 3. Mechanisms of friction; 4. Mechanisms of wear; 5. Friction and wear as system properties; List of symbols; References; Chapter 2. Interfacial Friction of Polymer Composites. General Fundamental Principles; Abstract; 1. Introduction; 2. Deformation or ploughing friction; 3. Interfacial or adhesion friction; 4. Other models of friction; 5. Lubricated systems , 6. ConclusionsList of symbols; Acknowledgements; References; Chapter 3. Friction and Wear of Materials with Heterogeneous Microstructures; Abstract; 1. Introduction; 2. Types of microstructure and anisotropy; 3. Formal description of friction and wear; 4. The coefficient of wear and the role of macrohardness; 5. Components of the coefficient of friction; 6. Components of the wear coefficient, k, and the role of fracture; 7. Isotropic heterogeneous microstructures; 8. Anisotropic structures; 9. Relations between friction and wear; List of symbols; Acknowledgements; References , Chapter 4. Tribological Properties of Selected Polymeric Matrix Composites against Steel SurfacesAbstract; 1. Introduction; 2. Experimental; 3. Coefficients of friction given by selected polymeric materials against smooth steel; 4. Coefficients of friction given by selected polymeric materials against an abrasive counterface; 5. Abrasive wear of selected polymeric materials; 6. Conclusions; List of symbols; References; Chapter 5. Effects of Various Fillers on the Friction and Wear of PTFE-Based Composites; Abstract; 1. Introduction; 2. Molecular and morphological characteristics of PTFE , 3. Tribological characteristics of PTFE4. Friction and wear of glass and carbon fiber-filled PTFE; 5. Friction and wear of PTFE incorporating various fillers; 6. Roles of various fillers incorporated in PTFE; 7. Effect of water lubrication on the friction and wear of PTFE-based composites; 8. Conclusions; List of symbols; References; Chapter 6. Friction and Wear of Metal Matrix-Graphite Fiber Composites; Abstract; 1. Introduction; 2. Materials; 3. Friction and wear behavior; 4. Wear mechanisms; 5. Potential applications; 6. Conclusions; List of symbols; References , Chapter 7. Friction and Wear Performance of Unidirectionally Oriented Glass, Carbon, Aramid Stainless Steel Fiber-Reinforced PlasticsAbstract; 1. Introduction; 2. Experimental; 3. Law of mixtures for calculating the friction coefficient; 4. Results; 5. The wear equation for FRP; 6. Some topics related to the tribology of FRP; 7. Concluding remarks; Acknowledgements; List of symbols; References; Chapter 8. Wear of Reinforced Polymers by Different Abrasive Counterparts; Abstract; 1. Introduction; 2. Experimental details; 3. Sliding wear against steel counterparts , 4. Abrasion by hard abrasive particles , English
    Additional Edition: ISBN 0-444-42524-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    almahu_9949762862502882
    Format: 1 online resource (582 pages)
    Edition: 1st ed.
    ISBN: 0-323-95781-1
    Series Statement: Elsevier Series on Advanced Ceramic Materials Series
    Note: Front Cover -- Advanced Ceramics for Photocatalytic Membranes -- Copyright Page -- Contents -- List of Contributors -- Preface -- 1 Introduction -- 1 A review of the current development of photocatalytic membrane research -- List of abbreviations -- 1.1 Introduction -- 1.1.1 Inorganic-based photocatalytic membranes -- 1.1.1.1 Ceramic membrane classification -- 1.1.1.2 Additional functionalities of a ceramic photocatalytic membrane reactor -- 1.1.1.3 Limitations facing ceramic membranes -- 1.1.2 Polymeric-based photocatalytic membranes -- 1.1.2.1 Challenges facing polymeric photocatalytic membranes -- 1.1.3 Challenges facing photocatalysts -- 1.1.3.1 Doping -- 1.1.3.2 Surface sensitization -- 1.1.3.3 Construction of heterojunctions -- 1.1.3.4 Defect engineering -- 1.1.3.5 Increased electrocatalytic active sites -- 1.1.3.6 Micro/nanostructure -- 1.1.4 Photocatalytic membranes for environmental protection applications -- 1.1.4.1 Photocatalytic membrane performance against dyes -- 1.1.4.2 Photocatalytic membrane performance against pharmaceutical waste -- 1.2 Conclusions and future prospects -- References -- 2 Modeling, simulation, and theory of the mass transfer mechanism of photocatalytic membrane reactor -- List of symbols -- List of abbreviations -- 2.1 Introduction -- 2.2 Formal analysis -- 2.2.1 Batch slurry photoreactor -- 2.2.1.1 Equation for photoreaction rate -- 2.2.1.2 Change of phenol concentration with time -- 2.2.2 Semibatch PMR -- 2.2.2.1 Evaluation of the membrane flux -- 2.2.2.2 Evaluation of phenol concentration in the permeate -- 2.2.2.3 Calculation of change in Vtot,Cphenol,f,Cp,voverall, and Cphenol,p with time -- 2.3 Discussion and evaluation -- 2.3.1 Batch slurry photoreactor -- 2.3.2 Semibatch system -- 2.3.3 Semibatch system without ultraviolet irradiation and without TiO2 nanoparticles -- 2.4 Conclusions -- References. , 2 Synthesis of photocatalytic membrane via physical approach -- 3 Blending technique -- List of symbols -- List of abbreviations -- 3.1 Introduction -- 3.2 Photocatalytic membranes -- 3.3 Blending technique for photocatalytic membrane fabrication -- 3.3.1 Phase inversion method -- 3.3.2 In situ polymerization -- 3.3.3 Electrospinning -- 3.4 Advantages and limitations of blending techniques -- 3.5 Conclusion -- Acknowledgment -- References -- 4 Sputtering technique -- Key terms and definitions -- List of symbols -- List of abbreviations -- 4.1 Introduction -- 4.2 Fundamental of sputtering technique -- 4.2.1 Reactive sputtering -- 4.2.2 Co-sputtering -- 4.3 Types of sputter deposition -- 4.3.1 Magnetron sputtering technique -- 4.3.1.1 Direct current magnetron sputtering -- 4.3.1.2 Radio frequency magnetron sputtering -- 4.3.1.3 Pulsed direct current magnetron sputtering -- 4.3.1.4 High-power impulse magnetron sputtering -- 4.3.2 Ion beam sputter deposition -- 4.3.3 Electron beam deposition -- 4.3.4 Pulsed laser deposition -- 4.4 Impacts of sputter deposition of photocatalysts on membrane characteristics and performance -- 4.4.1 Ceramic photocatalytic membranes -- 4.4.2 Polymeric photocatalytic membranes -- 4.5 Conclusion -- Acknowledgment -- References -- 5 Dip coating technique -- Nomenclature -- List of symbols -- List of abbreviations -- 5.1 Introduction -- 5.2 Mechanism and theories -- 5.2.1 Draining regime -- 5.2.2 Capillary regime -- 5.3 Sol-gel dip coating -- 5.4 Dip-coated photocatalytic membrane applications -- 5.4.1 Removal of pollutants in water -- 5.4.2 Heavy metal removal -- 5.4.3 Hydrogen production -- 5.4.4 Air purification and gas sensing -- 5.4.5 Inactivation of harmful microorganisms -- 5.5 Conclusion -- Acknowledgment -- References -- 6 Spray coating techniques for fabrication of photocatalytic membrane -- List of symbols. , List of abbreviations -- 6.1 Introduction -- 6.2 Basic concept of spray coating technique -- 6.3 Spray coating techniques for photocatalytic membranes fabrication -- 6.3.1 Thermal spray coating -- 6.3.1.1 Plasma spray coating -- 6.3.1.2 Thermo-spraying method -- 6.3.2 Direct spraying method -- 6.3.3 Step-by-step spraying method -- 6.3.4 Spin-spraying method -- 6.3.5 Electro-spraying method -- 6.4 Comparison of various types of spraying methods -- 6.5 Conclusion -- Acknowledgment -- References -- 3 Synthesis of photocatalytic membrane via chemical approach -- 7 Grafting process on photocatalytic membrane -- Nomenclature -- List of symbols -- List of abbreviations -- 7.1 Introduction -- 7.2 Grafting techniques -- 7.2.1 Photo-induced grafting method -- 7.2.2 Plasma grafting method -- 7.2.3 Radiation-induced grafting method -- 7.2.4 Thermal-induced grafting method -- 7.2.5 Atom transfer radical polymerization method -- 7.2.6 Ring-opening polymerization method -- 7.3 Grafted-photodegradation performance -- 7.4 Conclusion -- Acknowledgment -- References -- 8 Hydrothermal and solvothermal methods -- 8.1 Introduction -- 8.2 Principle and mechanism of hydrothermal and solvothermal method -- 8.2.1 Factors affecting the hydrothermal and solvothermal synthesis for photocatalytic application -- 8.2.1.1 Effect of hydrothermal duration -- 8.2.1.2 Effect of hydrothermal temperature -- 8.2.1.3 Effect of pH of the reaction medium -- 8.2.1.4 Effect of solvent -- 8.2.1.5 Effect of calcination temperature -- 8.3 Recent advances in hydrothermal and solvothermal-based polymer and ceramic membrane for photocatalytic application -- 8.3.1 Ceramic-based photocatalytic membrane -- 8.4 Challenges -- 8.5 Conclusion -- References -- 9 Electroless deposition of zinc oxide for photocatalytic membrane -- List of symbols -- List of abbreviations -- 9.1 Introduction. , 9.2 Preparation for electroless zinc oxide deposition -- 9.2.1 Surface preparation -- 9.2.1.1 Substrate cleaning and etching -- 9.2.1.2 Sn-Pd activation -- 9.2.1.2.1 Effect of tin (II) chloride and hydrochloric acid concentration -- 9.2.1.2.2 Effect of rinsing condition after sensitization -- 9.2.1.2.3 Effect of Palladium Chloride Concentration -- 9.2.2 Deposition process -- 9.2.2.1 Effect of zinc salt concentration -- 9.2.2.2 Effect of reducing agent concentration -- 9.2.2.3 Effect of deposition temperature -- 9.3 Impact of type of ZnO deposition on photocatalytic activity -- 9.4 Conclusion -- Acknowledgement -- References -- 4 Characterization and performance analysis of photocatalytic membrane -- 10 Morphological analysis of photocatalytic membrane (SEM, FESEM, TEM) -- List of symbols -- List of abbreviations -- 10.1 Introduction -- 10.2 Scanning electron microscopy analysis -- 10.3 Field emission electron microscopy analysis -- 10.4 Transmission electron microscopy analysis -- 10.4.1 Flat-sheet membrane -- 10.4.2 Nanofiber -- 10.4.3 Hollow fiber membrane -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Physical analysis of photocatalytic membrane (AFM, contact angle, pore size, and porosity) -- List of abbreviations -- 11.1 Introduction -- 11.2 Physical properties and hydrophilicity of the membranes -- 11.2.1 Roughness surface characteristics of membranes -- 11.2.1.1 Semiconductor materials for bulk modification of membranes -- 11.2.1.2 Semiconductor materials for membrane surface modification -- 11.2.2 Membrane surface hydrophilicity -- 11.2.3 Membrane porosity and pore size -- 11.3 Conclusions and future perspectives -- References -- 12 Chemical analysis of photocatalytic membrane (FTIR, XRD, UV-vis/optical, XPS, and zeta potential) -- List of symbols -- List of abbreviations -- 12.1 Introduction. , 12.2 Fourier transforms infrared spectroscopy -- 12.2.1 Sample preparation methods -- 12.2.2 Measurement techniques -- 12.3 X-ray diffraction spectroscopy -- 12.4 Ultraviolet-visible spectroscopy -- 12.5 X-ray photoelectron spectroscopy -- 12.6 Zeta potential -- 12.7 Challenges and future outlooks -- Acknowledgment -- References -- 13 Permeation performance analysis of advanced ceramic and polymeric-based photocatalytic membrane (flux and rejection) -- List of abbreviations -- 13.1 Introduction -- 13.2 Photocatalytic membrane materials for water treatment -- 13.2.1 Photocatalysis and membrane technologies -- 13.2.2 Nanomaterial-based photocatalytic membrane performance -- 13.2.3 Polymeric versus ceramic photocatalytic membranes and their performance (flux and rejection) -- 13.3 Polymeric photocatalytic hybrid membranes and their permeation performance -- 13.3.1 Photocatalytic polymer membranes based on TiO2 -- 13.3.2 TiO2 modification -- 13.4 Ceramic photocatalytic hybrid membranes and their permeation performance -- 13.4.1 Ceramic photocatalytic membranes -- 13.4.2 Nanomaterial-based ceramic photocatalytic membranes -- 13.4.3 Photocatalysts supported in ceramic materials -- 13.4.3.1 TiO2-photocatalysts supported in ceramic materials -- 13.4.3.2 TiO2 modification -- 13.4.4 Microstructure and pure water flux for photocatalytic ceramic membranes -- 13.4.5 Dual-layered hollow fiber membranes -- 13.5 Conclusions and perspectives -- References -- 14 Photodegradation performance of photocatalytic membrane -- Key terms and definitions -- List of symbols -- List of abbreviations -- 14.1 Introduction -- 14.2 Effect of light -- 14.2.1 Natural light sources -- 14.2.2 Artificial light sources -- 14.2.3 Light intensity -- 14.3 Effect of photocatalyst dosage -- 14.4 Effect of the concentration of substrate -- 14.5 Effect of pH and temperature. , 14.5.1 Effect of solution pH on photodegradation of dye.
    Additional Edition: ISBN 0-323-95418-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    almahu_9949697898402882
    Format: 1 online resource (535 pages) : , illustrations
    ISBN: 0-12-813552-2
    Note: Front Cover -- Current Trends and Future Developments on (Bio-) Membranes -- Copyright Page -- Contents -- List of Contributors -- Preface -- Introduction: Membrane Desalination Today, Past, and Future -- 1 Introduction -- 2 History of Seawater Desalination Technologies -- 3 Improvements of Desalination Technologies -- 3.1 RO Technologies -- 3.1.1 Development of ERD -- 3.1.2 Evolution of RO membrane -- 3.2 Hybrid Thermal Desalination Processes -- 4 Future Desalination Technologies -- 4.1 Alternative Membrane Based Technologies for Desalination -- 4.1.1 Forward osmosis (FO) -- 4.1.2 Pressure retarded osmosis (PRO) -- 4.1.3 Membrane distillation (MD) -- 4.1.4 Capacitive deionization (CDI) -- 4.1.5 Reverse electrodialysis (RED) -- 4.2 Modifications of Membranes -- 4.2.1 Silicon dioxide (SiO2) -- 4.2.2 Graphene oxide (GO) -- 4.2.3 Aquaporins (AQPs) -- 4.2.4 MXenes -- 4.2.5 Metal-organic frameworks (MOFs) -- 4.3 New Techniques for Membrane Fabrication -- 4.3.1 3D printing -- 4.3.2 Electrospinning -- 4.4 Management of Seawater Brine -- 4.4.1 Membrane crystallization (MCr) -- 4.4.2 MD/PRO hybrid process -- 5 Conclusion and Future Trends -- List of Acronyms -- References -- I. Advanced Membrane Materials and Technology -- 1 Graphene and CNT Technology -- 1 Introduction -- 2 The Basis of Graphene and Carbon Nanotubes -- 2.1 Synthesis, Structure, and Properties of Graphene -- 2.2 Synthesis, Structure, and Properties of Carbon Nanotubes -- 3 Nanofluidic Properties of Carbon Nanotubes -- 3.1 Water and Ion Transport in Pristine Carbon Nanotubes -- 3.2 Water and Ion Transport in Modified Carbon Nanotubes -- 4 Nanofluidic Properties of Graphene -- 4.1 Water and Ion Transport in Pristine Graphene -- 4.2 Water and Ion Transport in Modified Graphene -- 5 Application of Graphene and Carbon Nanotubes Technology in Desalination. , 5.1 Application of Graphene in Desalination -- 5.2 Application of Carbon Nanotubes in Desalination -- 6 Conclusion and Future Trends -- Acknowledgment -- List of Abbreviations -- References -- Further Reading -- 2 Carbon-Based Membranes for Desalination -- 1 Introduction -- 2 Carbon-Based Nanomaterials -- 2.1 Classification of Carbon-Based Nanomaterials -- 2.2 Characteristics of Carbon-Based Nanomaterials for Desalination -- 3 Standalone Carbon-Based Membranes for Desalination -- 3.1 Carbon Nanotube Membranes -- 3.2 Graphene and Graphene Oxide Membranes -- 4 Carbon-Based Nanocomposite Membranes for Desalination -- 4.1 Carbon Nanotubes/Polymer Nanocomposite Membranes -- 4.2 Graphene/Polymer Nanocomposite Membranes -- 4.3 Carbon Nanofibers Nanocomposite Membranes for Desalination Application -- 4.3.1 Fabrication of electrospun nanofibrous membranes via electrospinning method -- 4.3.2 Conversion of electrospun nanofibers to carbon nanofibers through pyrolysis process -- 4.3.3 Thin film carbon nanofibrous nanocomposite membrane -- 4.3.3.1 Thin film carbon nanofibrous nanocomposite membranes by coating -- 4.3.3.2 Thin film carbon nanofibrous nanocomposite membranes by interfacial polymerization technique -- 4.3.3.3 Self-supporting membranes made from carbon nanofibers -- 4.3.3.4 Functionalization of carbon nanofibers through carboxylation -- 4.3.4 The performance of carbon nanofibrous and electrospun nanofibrous membranes in thin-film nanocomposite membrane for d... -- 5 Conclusions and Future Trends -- List of Acronyms -- References -- 3 The Impact of Thermoplasmonics in Membrane Technology -- 1 Introduction -- 2 Thermoplasmonics -- 2.1 Theory -- 2.2 Nanoscale Hotspots -- 2.3 Materials -- 3 Temperature Dependence of Membrane Processes -- 4 Thermoplasmonic Effects on Membrane Nanofiltration -- 5 Thermoplasmonic Membrane Distillation. , 6 Thermoplasmonic Effect on Pervaporation -- 7 Thermoplasmonic Separation of Oil-in-Water Nanoemulsions -- 8 Conclusions and Future Trends -- List of Acronyms -- List of Symbols -- References -- 4 Electrospun Nanofibrous Membranes for Desalination -- 1 Introduction -- 1.1 Reverse Osmosis Membranes -- 1.2 Forward Osmosis Membranes -- 1.3 Membranes for Membrane Distillation -- 2 Advances of Nanofibrous Composite Membrane for Desalination -- 2.1 The Adoption of Electrospun Nanofibrous Substrates for Desalination -- 2.2 New Support for Reverse Osmosis/Forward Osmosis Membranes -- 2.2.1 Pore size and distribution -- 2.2.2 Fiber diameter and fiber geometry -- 2.2.3 Porosity -- 2.2.4 Concept of directed water channels -- 2.3 New Chemical Properties for Membrane Distillation Membranes -- 3 Conclusions and Future Trends -- Acknowledgments -- Lists of Acronyms and Symbols -- References -- 5 Full-Scale Membrane Distillation Systems and Performance Improvement Through Modeling: A Review -- 1 Introduction -- 2 Full-Scale Membrane Distillation Facilities -- 2.1 Senoko Membrane Distillation Plant -- 2.2 Vacuum Membrane Distillation and Air Gap Membrane Distillation Pilots in Qatar -- 2.3 Vacuum Multieffect Membrane Distillation Plant at Gulhi, Maldives -- 2.4 V-MEMD Plant at Kunfunadhoo Island, Maldives -- 2.5 Masdar RE-Desalination Plant -- 2.6 Pilot Evaluation Unit at Masdar Institute of Science and Technology, UAE -- 2.7 Pilot Evaluation Unit at Fraunhofer Institute, Germany -- 2.8 Solar-Powered Membrane Distillation System Membrane Distillation Project -- 2.9 Membrane Distillation in Remote Areas Project -- 3 Detailed Overview of Existing Membrane Distillation Models -- 3.1 Heat Transfer Models -- 3.2 Mass Transfer Models -- 3.2.1 Models from Sherwood number correlations -- 3.2.2 Mass transfer model based on Fick's law -- 3.2.3 Schofield's model. , 3.2.4 Dusty gas model -- 3.2.5 Pore size distribution model from kinetic theory of gases -- 3.2.6 Water activity for partial pressure estimations -- 3.2.7 Structural network models -- 3.2.8 Empirical models -- 3.2.9 Artificial neural network models -- 3.2.10 Design of experiments toolbox models -- 3.2.11 Computational fluid dynamics models -- 3.3 Two-Dimensional Models -- 3.4 Water Cost Modeling and Economic Assessment of Membrane Distillation -- 4 Conclusions and Future Trends -- List of Acronyms -- List of Symbols -- Acknowledgment -- References -- II. Towards Zero Liquid Discharge in Desalination -- 6 Membrane Wetting in Membrane Distillation -- 1 Introduction -- 2 Wetting Behavior of Materials -- 2.1 Contact Angle -- 2.2 Surface Tension -- 3 Wetting in Membrane Distillation -- 3.1 Membrane Structure -- 4 Wetting Prediction by Mathematical Models -- 5 Effective Parameters on Wetting of MD -- 5.1 Membrane Structure -- 5.2 Operational Parameters -- 5.3 Membrane Degradation and Fouling -- 6 Membrane Dewetting -- 7 Conclusion and Future Trends -- List of Acronyms -- List of Symbols -- References -- 7 Membrane Crystallization -- 1 Introduction -- 2 Transmembrane Transport and Supersaturation Generation -- 3 Nucleation on Membranes -- 4 Design Principles and Product Characteristics -- 5 Applications in Desalination -- 6 Other Configurations of Interest in Desalination -- 7 Conclusions and Future Trends -- List of Acronyms -- List of Latin Symbols -- List of Greek Symbols -- List of Underscripts -- List of Superscripts -- References -- 8 A Review: Desalination by Forward Osmosis -- 1 Introduction -- 2 Forward Osmosis Membranes -- 2.1 Cellulosic Membranes -- 2.2 Polyamide Membranes -- 2.2.1 Effect of substrate -- 2.2.2 Effect of polyamide layer modification -- 3 Desalination -- 4 Conclusions and Future Trends -- List of Acronyms -- References. , 9 Wind-Aided Intensified Evaporation (WAIV): An Environmentally Sustainable Method for Brine Management -- 1 Introduction -- 2 Physicochemistry of the Wind-Aided Intensified Evaporation Unit -- 3 Design of the Wind-Aided Intensified Evaporation System -- 3.1 Surfaces -- 3.2 Distribution of Brine -- 4 Field Experience -- 4.1 Spray Prevention -- 4.2 Desalination Brines -- 4.3 Evaporating Mineral Brines for Production -- 5 Economics -- 6 Conclusions and Future Trends -- List of Acronyms -- List of Symbols -- List of Subscripts -- Acknowledgments -- References -- 10 Membrane Desalination in Shale Gas Industry: Applications and Perspectives -- 1 Introduction -- 2 Water Consumption and Wastewater Generation -- 3 Management Options for Shale Gas Wastewater -- 3.1 Underground Injection -- 3.2 Internal Water Reuse and Water Recycling -- 3.3 Zero-Liquid Discharge Desalination: Advantages and Technologies -- 4 Membrane-Based Technologies and Applications -- 4.1 Thermal-Driven Process: Membrane Distillation -- 4.2 Pressure-Driven Processes -- 4.2.1 Reverse osmosis -- 4.2.2 Forward osmosis -- 4.2.3 Nanofiltration -- 4.3 Electrochemical Charge-Driven Processes: Electrodialysis and Electrodialysis Reversal -- 5 Challenges of Membrane-Based Zero-Liquid Discharge Desalination -- 5.1 Wastewater Composition -- 5.2 Energy Consumption and Water Production Costs -- 5.3 Environmental Impacts -- 6 Conclusions and Future Trends -- Acknowledgments -- List of Acronyms -- References -- III. Emerging Low-Energy Systems for Desalination -- 11 Fundamentals of Pressure Retarded Osmosis -- 1 Introduction -- 2 Thermodynamic Background -- 3 Effect of Salinity -- 3.1 Gibbs' Free Energy of Mixing -- 4 Internal and External Concentration Polarization (ICP & ECP) -- 5 Thermodynamic Importance of Membrane Selection -- 6 Conclusion and Future Trends -- List of Symbols -- Greek Letters. , References.
    Additional Edition: ISBN 0-12-813551-4
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    almahu_9949225567802882
    Format: 1 Online-Ressource (214 pages) : , Illustrations
    Edition: 1st ed.
    ISBN: 1-56990-630-0 , 1-56990-629-7
    Series Statement: Polymer Engineering
    Content: Investigates the influence of fiber length especially on fatigue behavior of thermoplastic composites. The processing influences on fiber length of composites during injection molding compounding are analysed and quantified. It is shown how to directly influence fiber length in the composite.
    Note: Intro -- PREFACE -- TOC -- 1 INTRODUCTION -- 2 STATE OF THE ART -- 2.1 Processing of Long Fiber Reinforced Thermoplastic Composites (LFRT) -- 2.2 General mechanisms of fiber length degradation during direct processing -- 2.3 Fiber length degradation during injection molding compounding -- 2.3.1 Fiber fracture in the compounding extruder -- 2.3.2 Fiber fracture due to the valves -- 2.3.3 Fiber fracture during melt buffering and injection -- 2.3.4 Fiber alignment and fiber fracture during cavity filling -- 2.4 Determination of Fiber Length -- 2.5 Static Properties of Fiber-Reinforced Thermoplastic Composites -- 2.5.1 Micromechanics under Static Load -- 2.5.2 Modeling of Static Properties -- 2.5.3 Influences on Static Properties of Fiber-Reinforced Thermoplastic Composites -- 2.6 Dynamic Properties of Fiber-Reinforced Thermoplastic Composites -- 2.6.1 Micromechanics under Dynamic Load -- 2.6.2 Measurement Methods for Fatigue -- 2.6.3 Influences on Dynamic Properties of Fiber-Reinforced Thermoplastic Composites -- 3 CONCLUSIONS FROM THE CURRENT STATE OF THE ART - MOTIVATION & -- AIM -- 4 EXPERIMENTAL: METHODS & -- MATERIALS -- 4.1 Aim: Processing Influences on Composite Properties in Injection Molding Compounding -- 4.1.1 Injection Molding Compounding & -- Injection Molding -- 4.1.2 Morphology Determination -- 4.2 Aim: Influences of Fiber Length on Static Properties -- 4.3 Aim: Influences of Fiber Length on Fatigue Properties -- 4.4 Materials -- 4.4.1 Matrix Systems -- 4.4.2 Glass Fibers -- 4.4.3 Coupling Agents -- 4.4.4 Manufactured Composites -- 5 INFLUENCES ON MATERIAL PROPERTIES IN DIRECT PROCESSING -- 5.1 Influence of Screw Setup and Fiber Inlet -- 5.2 Influence of Processing Parameters and Number of Rovings -- 5.3 Conclusion of Process Investigation: Fiber Length Degradation in the IMC. , 5.3.1 Fiber Fracture in the Compounding Extruder -- 5.3.2 Fiber Fracture during Melt Buffering and Injection -- 5.3.3 Fiber Fracture during Cavity Filling -- 5.4 Fiber Alignment during Cavity Filling -- 6 INFLUENCE OF FIBER LENGTH ON COMPOSITE PROPERTIES UNDER STATIC LOAD -- 6.1 Short Term Properties of Glass Fiber Reinforced Composites -- 6.2 Modelling of Fiber Length Influence on Short Term Properties -- 6.3 Micromechanical Phenomena under Static Load -- 6.4 Conclusions from the Previous Paragraphs -- 7 INFLUENCE OF FIBER LENGTH ON COMPOSITE PROPERTIES UNDER FATIGUE LOAD -- 7.1 Long Term Properties of Glass Fiber Reinforced Composites -- 7.2 Self-Heating of the Samples during Testing -- 7.3 Modelling of Fiber Length Influence on Long Term Properties -- 7.4 Micromechanical Phenomena under Dynamic Load -- 7.5 Conclusions from the Previous Paragraphs -- 7.6 S-N-Curves of Selected Composites -- 7.6.1 Residual Strength after Dynamic Testing -- 7.6.2 Conclusions from the Previous Paragraphs -- 8 FUTURE PERSPECTIVES: TRANSFER TO REALITY -- 9 DEUTSCHE ZUSAMMENFASSUNG -- 10 ABBREVIATIONS, EQUATIONS & -- INDICES -- 10.1 Abbreviation -- 10.2 Formula Symbols -- 10.3 Indices -- 11 LITERATURE -- 12 OWN PUBLICATIONS RELATED TO THIS THESIS -- Curriculum Vitae.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    UID:
    almahu_9949640556402882
    Format: 1 online resource (239 pages)
    Edition: First edition.
    ISBN: 0-323-98468-1
    Note: Front Cover -- Progresses in Ammonia: Science, Technology and Membranes -- Copyright Page -- Contents -- List of contributors -- Preface -- 1. Catalytic H2 extraction from ammonia -- 1.1 Introduction -- 1.2 Catalytic ammonia decomposition -- 1.2.1 Catalysts for ammonia decomposition -- 1.2.1.1 Monometallic catalysts -- 1.2.1.1.1 Ruthenium-based catalysts -- 1.2.1.1.2 Ni-based catalysts -- 1.2.1.1.3 Fe-based catalysts -- 1.2.1.1.4 Co-based catalysts -- 1.2.1.2 Bimetallic catalysts -- 1.2.1.3 Transition metal nitrides -- 1.2.2 Ammonia decomposition reaction mechanism -- 1.3 Ammonia electrolysis -- 1.4 Catalytic membrane reactors for ammonia decomposition -- 1.5 Conclusions and future trend -- List of acronyms -- References -- 2. The recovery of hydrogen from ammonia production processes -- 2.1 Introduction -- 2.2 Ammonia generation process -- 2.3 Hydrogen recovery technologies -- 2.3.1 Absorption technology -- 2.3.2 Adsorption technology -- 2.3.3 Cryogenic distillation technology -- 2.3.4 Membrane technology -- 2.4 Conclusion and future trends -- List of acronyms -- References -- 3. Hydrogen production system combined with a membrane reactor from ammonia -- 3.1 Introduction -- 3.2 Membrane reactor technology -- 3.3 Strategies of hydrogen production -- 3.3.1 Reforming processes -- 3.3.2 Electrolysis process -- 3.3.3 Dehydrogenation processes -- 3.3.4 Ammonia decomposition -- 3.4 Hydrogen production from ammonia in membrane reactor system -- 3.4.1 Applicable catalysts in ammonia decomposition -- 3.4.2 Palladium membrane reactors -- 3.4.3 Silica membrane reactors -- 3.5 Conclusion and future trends -- List of acronyms -- References -- 4. Efficient ammonia decomposition in membrane reactor for hydrogen separation, purification, storage, and utilization -- 4.1 Introduction -- 4.2 Catalytic ammonia decomposition and hydrogen separation. , 4.2.1 Catalysts and ammonia decomposition -- 4.2.2 Reactor infrastructures for ammonia decomposition -- 4.2.3 Hydrogen separation/purification -- 4.3 Pd-based membrane and membrane reactor -- 4.3.1 Multifunctional membrane reactors -- 4.4 Membrane reactors for ammonia decomposition -- 4.4.1 Pd-based membrane reactors for ammonia decomposition-experimental data -- 4.4.2 Silica-based membrane reactors -- 4.4.3 Lanthanide-based membrane reactor -- 4.4.4 Membrane reactors for ammonia decomposition: modeling results -- 4.5 Conclusion and future trends -- List of acronyms -- List of symbols -- References -- 5. Highly purified hydrogen production from ammonia for proton exchange membrane fuel cell -- 5.1 Introduction -- 5.2 Hydrogen as a fuel -- 5.2.1 Ammonia as a hydrogen carrier -- 5.3 Types of fuel cells -- 5.4 Technology of proton exchange membrane fuel cells -- 5.4.1 Advantages and disadvantages of proton exchange membrane fuel cells -- 5.4.2 Factors influencing the performance of proton exchange membrane fuel cells -- 5.4.2.1 Operating temperature and pressure -- 5.4.2.2 Relative humidity -- 5.4.2.3 Membrane thickness -- 5.4.2.4 The type and thickness of catalyst layer -- 5.4.2.5 The stoichiometric flow ratio -- 5.4.2.6 The compression and thickness of gas diffusion layer -- 5.5 Strategies for hydrogen production from ammonia -- 5.5.1 Catalytic decomposition of ammonia -- 5.5.1.1 Catalysts for decomposition of ammonia -- 5.5.1.2 Reaction mechanism of decomposition of ammonia -- 5.5.2 Electrolysis of ammonia -- 5.5.2.1 Electrocatalysts for electrolysis of ammonia -- 5.5.2.1.1 Pt-electrodes -- 5.5.2.1.2 Ni-electrodes -- 5.5.3 Hydrogen production from ammonia borane -- 5.5.3.1 Catalysts for NH3BH3 hydrolysis -- 5.6 Hydrogen purification methods -- 5.6.1 Adsorption -- 5.6.1.1 Pressure swing adsorption -- 5.6.1.2 Temperature swing adsorption. , 5.6.1.3 Vacuum swing adsorption -- 5.6.2 Cryogenic distillation -- 5.6.3 Membrane separation -- 5.6.3.1 Polymer membrane -- 5.6.3.2 Metallic membrane -- 5.6.3.3 Porous membrane -- 5.6.3.4 Ceramic membrane -- 5.6.4 Metal hydride separation -- 5.7 Literature on membrane technology for pure hydrogen in PEM fuel cells -- 5.8 Conclusion and future trends -- List of acronyms -- List of symbols -- References -- 6. Carbon dioxide capture by aqueous ammonia with membrane -- 6.1 Introduction -- 6.2 Membrane technology for carbon dioxide capture -- 6.2.1 Carbon dioxide absorbents for membrane contactor -- 6.2.1.1 Alkanolamines -- 6.2.1.2 Solid electrolyte and ionic liquid -- 6.2.1.3 Ammonia -- 6.2.2 Mass transfer in hollow fiber membrane contactor -- 6.2.3 Membrane modules -- 6.2.3.1 Longitudinal flow and cross-flow modules -- 6.2.4 Carbon dioxide capture by aqueous ammonia with hollow fiber membrane contactor -- 6.3 Conclusions and future trends -- List of acronyms -- List of symbols -- References -- 7. NH3 decomposition in autothermal microchannel reactors -- 7.1 Introduction -- 7.2 Autothermal microchannel reactor -- 7.3 Kinetic and thermodynamics -- 7.4 Modeling of NH3 decomposition in the microchannel reactor -- 7.5 Conversion on catalytic membrane reactor -- 7.6 Flow-reaction equations governing ammonia decomposition microreactor -- 7.7 Numerical solution of ammonia decomposition in autothermal microchannels -- 7.8 On the catalysis of NH3 scission -- 7.9 A brief on reactor efficiency -- 7.10 Conclusion and future trends -- List of acronyms -- List of symbols -- References -- Appendix 1 -- Appendix 2 -- 8. Computational fluid dynamics model to investigate the effect of NH3 decomposition and NH3 oxidation flows -- 8.1 Introduction -- 8.2 Basics of ammonia production -- 8.2.1 Reaction kinetics of ammonia oxidation -- 8.2.2 Decomposition kinetics of ammonia. , 8.3 Computational fluid dynamics modeling -- 8.3.1 Two dimensional -- 8.3.2 Three dimensional -- 8.3.2.1 Oxidation -- 8.3.2.2 Decomposition -- 8.4 Conclusions and future trends -- List of acronyms -- List of symbols -- References -- Index -- Back Cover.
    Additional Edition: Print version: Basile, Angelo Progresses in Ammonia: Science, Technology and Membranes San Diego : Elsevier,c2023 ISBN 9780323885034
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    UID:
    almahu_9948211937602882
    Format: 1 online resource (350 pages).
    Edition: First edition.
    ISBN: 1-5231-2683-3 , 1-56990-693-9
    Series Statement: Progress in polymer processing (PPP) series
    Content: "Discontinuous long fiber reinforced polymer structures with local continuous fiber reinforcements represent an important class of lightweight materials with broad design possibilities and diverse technical applications, e.g. in vehicle construction. However, in contrast to continuous fiber reinforced composites, extensively used in the aircraft industry, there is still a lack of integrated and experimentally proven concepts for manufacture, modeling, and dimensioning of combinations of discontinuously and continuously reinforced polymer structures. This is partly ascribed to the complexity of the manufacturing processes of discontinuously reinforced polymers, with heterogeneous, anisotropic, and nonlinear material and structural properties, but also to the resulting bonding problem of both material types. This book addresses these issues, including both continuous and discontinuous fiber processing strategies. Specific design strategies for advanced composite reinforcement strategies are provided, with an integrated and holistic approach taken for composites material selection, product design, and mechanical properties. Characterization, simulation, technology, design, future research, and implementation directions are also included. Especially in the field of application of three-dimensional load-bearing structures, this book provides an excellent foundation for the enhancement of scientific methods and the education of engineers who need an interdisciplinary understanding of process and material techniques, as well as simulation and product development methods"--
    Note: Intro -- Foreword -- Acknowledgments -- Preface -- List of Contributors -- List of Symbols -- List of Acronyms -- Contents -- 1 Introduction to Continuous-Discontinuous Fiber-Reinforced Polymer Composites -- 1.1 Fiber-Reinforced Composite Materials -- 1.2 About IRTG GRK2078 -- 1.3 Compression Molding Process -- 1.4 Constituent Materials of CoDiCoFRTS -- 1.4.1 Thermoset Matrix Material -- 1.4.2 Fiber Reinforcements -- 1.5 Demonstrator Product -- 1.6 Organization of the Book -- 2 Manufacturing of CoDiCoFRP -- 2.1 Introduction -- 2.1.1 Challenges -- 2.1.2 Approach -- 2.2 Processing of CoDiCo Material -- David Bücheler -- 2.2.1 Introduction -- 2.2.2 Material and Process Development -- 2.2.3 Characterization and Modeling -- 2.2.4 Conclusions -- 2.3 Automated Integrated Handling and Preforming -- 2.3.1 Introduction -- 2.3.2 Grippers in Composite Production -- 2.3.3 Automated Placement of Grippers in Handling Systems -- 2.3.4 Prepreg-Specific Handling Tasks in Gripper Design -- 2.3.5 Demonstrator Units for Integrated Handling and Preforming -- 2.3.6 Conclusions -- 2.4 Quality Assurance of Continuous-Discontinuous Glass-Fiber SMC -- 2.4.1 Introduction -- 2.4.2 Defects in SMC and Unidirectional Prepregs -- 2.4.3 Classification of Defects -- 2.4.4 Measuring Methods and Testing Techniques -- 2.4.5 Multi-Sensor System -- 2.4.6 Data Fusion -- 2.4.7 Evaluation and Results -- 2.4.8 Effects of Defects -- 2.4.9 Conclusion -- 2.5 Machining of CoDiCoFRP -- 2.5.1 Introduction -- 2.5.2 Experimental Study of the Machining of CoDiCoFRP -- 2.5.3 Results and Discussion -- 2.5.4 Conclusions -- 2.6 Foaming of Microfibrillar Composites -- 2.6.1 Introduction -- 2.6.2 Fibril Formation during Blending -- 2.6.3 Uniaxial Extensional Flow Response of Fibrillar Blends -- 2.6.4 Linear Viscoelastic Shear Response of Fibrillar Blends. , 2.6.5 Effect of Fibers on the Crystallization of Polymers -- 2.6.6 Role of Crystallization in Foaming -- 2.6.7 Foaming of Fibrillated Blends -- 2.6.8 Conclusions -- 3 Characterization of CoDiCoFRP -- 3.1 Introduction -- 3.1.1 Challenges -- 3.1.2 Approaches -- 3.2 Interlaminar Fracture Analysis of Consolidated GF-PA6-Tapes -- 3.2.1 Introduction -- 3.2.2 Sample Manufacturing and Testing -- 3.2.3 Results of the Fracture Toughness Experiments -- 3.2.4 Analysis of the Microstructure and Crack-Initiating Factors -- 3.2.5 Assessment of the Physical Experiments by Numerical Simulations -- 3.2.6 Conclusions -- 3.3 Microstructure Characterization -- 3.3.1 Introduction -- 3.3.2 Statistics -- 3.3.3 Image Processing -- 3.3.4 Orientation Analysis -- 3.3.5 Fiber Volume Fraction -- 3.3.6 Fiber Tracking -- 3.3.7 Application -- 3.3.8 Summary -- 3.4 Mechanical Characterization of Hybrid Continuous-Discontinuous Glass/­Carbon Fiber Sheet Molding Compound Composites -- 3.4.1 Introduction -- 3.4.2 Material Manufacturing -- 3.4.3 Methods -- 3.4.4 Results -- 3.4.5 Conclusion -- 4 Simulation of Sheet Molding Compound (SMC) and Long Fiber-­Reinforced Thermoplastics (LFTP) -- 4.1 Introduction -- 4.1.1 Challenges -- 4.1.2 Approaches -- 4.2 Rheological Characterization and Process Simulation of SMC -- 4.2.1 Introduction -- 4.2.2 Rheological Measurements and Models -- 4.2.3 3D Process Simulation of SMC -- 4.2.4 Conclusion -- 4.3 Phase-Field Modeling of the Curing Process in Fiber-Reinforced Thermosets on a Microscale -- 4.3.1 Introduction -- 4.3.2 Microscale Simulation on the Basis of the Phase-Field Method -- 4.3.3 Modeling the Curing Process -- 4.3.4 Simulating the Curing Process -- 4.3.5 Conclusions -- 4.4 Multiscale Finite Element Simulation of Residual Stress in Laminates during Cure -- 4.4.1 Introduction -- 4.4.2 Thermo-Chemo-Mechanical Modeling of CoFRTS Laminates. , 4.4.3 Implementation in Finite Element Simulation -- 4.4.4 Validation of Evolution of Residual Stress in Laminates at the Macroscale -- 4.4.5 Microscale Simulation of Residual Stress in Laminates -- 4.4.6 Results and Discussion -- 4.4.7 Conclusions -- 4.5 Micromechanical Material Modeling and Experimental Characterization of DiCo SMC -- Loredana Kehrer, Jeffrey T. Wood, Thomas Böhlke -- 4.5.1 Introduction -- 4.5.2 Characterization of DiCo UPPH -- 4.5.3 Prediction of Thermo-Elastic Material Behavior -- 4.5.4 Comparison of Simulation Results and Experimental Data -- 4.5.5 Summary and Conclusions -- 4.6 Mean-Field Damage Modeling of DiCoFRTS -- 4.6.1 Introduction -- 4.6.2 Continuum Mechanical Model -- 4.6.3 Parameter Identification -- 4.6.4 Application -- 4.6.5 Conclusions -- 4.7 Material Modeling of Long Fiber-Reinforced Thermoplastic -- 4.7.1 Introduction -- 4.7.2 Material and Microstructure -- 4.7.3 Material Modeling -- 4.7.4 Parameter Identification and Model Verification -- 4.7.5 Quasi-Static Simulations -- 4.7.5.1 Simulations of Dynamic Tests -- 4.7.6 Conclusions -- 5 Designing CoDiCoFRP Structures -- 5.1 Introduction -- 5.1.1 Challenges -- 5.1.2 Approaches -- 5.2 Production-Oriented Dimensioning of Local Patches under Consideration of Distortion and Manufacturing Constraints -- 5.2.1 Introduction -- 5.2.2 Draping Simulation Method -- 5.2.3 Curing and Warpage Simulation Method -- 5.2.4 Multi-Objective Patch Optimization Algorithm with Embedded Draping and Curing Simulation -- 5.2.5 Application Example -- 5.2.6 Conclusion -- 5.3 A Process-Related Topology Optimization Method to Design DiCoFRP Structures -- 5.3.1 Introduction -- 5.3.2 State of Research -- 5.3.3 Influence of Material Orientations on Topology Optimization Results -- 5.3.4 Coupled Optimization Process -- 5.3.5 Application Example -- 5.3.6 Conclusion. , 5.4 CoDiCo-FiberFox - Decision-Support System in Early Phases of Product Development with Fiber-Reinforced Composites -- 5.4.1 Introduction -- 5.4.2 Design Guidelines for FRP -- 5.4.3 Demand for Topics and Content in Design Guidelines for FRP -- 5.4.4 Development of a Reference Design Guideline -- 5.4.5 CoDiCo-FiberFox - Decision-Support System -- 5.4.6 Conclusion -- 6 Compression Molding of the Demonstrator Structure -- 6.1 Introduction -- 6.2 Design and Manufacturing Technology of the Demonstrator -- 6.3 Compression Molding Simulation, Experimental Validation and Mapping -- 6.3.1 Flow Simulation -- 6.3.2 Mapping of Flow Simulation Results -- 6.3.3 Microstructure Characterization Using µCT Volume Images -- 6.3.4 Mapping of Orientation Tensor N -- 6.3.5 Comparison -- 6.4 Structural Simulation and Its Experimental Validation -- 6.4.1 Structural Simulation -- 6.4.2 Experimental Investigation -- 6.4.3 Comparison -- 6.5 Conclusions -- Index.
    Additional Edition: ISBN 1-56990-692-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages