Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    almafu_9960074030602883
    Format: 1 online resource (0 p.)
    ISBN: 9780128035016 , 0128035013
    Note: Description based upon print version of record. , Front Cover -- Principles and Applications of Quantum Chemistry -- Copyright -- Dedication -- Contents -- List of Figures -- List of Tables -- Biography -- Preface -- Acknowledgment -- 1 - Basic Principles of Quantum Chemistry -- 1.1 Introduction -- 1.2 Particle-Wave Duality -- 1.3 Matrix Mechanics and Wave Mechanics -- 1.4 Relativistic Quantum Mechanics -- 1.5 Schrödinger Wave Equation -- 1.5.1 Time-Independent Schrödinger Wave Equation -- 1.5.2 Schrödinger Equation in Three-Dimensions -- 1.6 Operators-General Properties, Eigenvalues, and Expectation Values -- 1.6.1 Some Operators in Quantum Mechanics -- 1.6.2 Properties of Operators -- 1.6.2.1 Commutation Properties of Linear and Angular Momentum Operators -- 1.7 Postulates of Quantum Mechanics -- 1.8 Hydrogen Atom -- 1.8.1 Solution of Schrödinger Equation for Hydrogen-Like Atoms -- 1.8.1.1 Solution of the φ Equations -- 1.8.1.2 Solution of the θ Equations -- 1.8.1.3 Solution of the Radial Equation -- 1.8.2 The Charge-Cloud Interpretation of Ψ -- 1.8.3 Normal State of the Hydrogen Atom -- 1.9 Atomic Orbitals -- 1.10 Electron Spin -- 1.10.1 Spin Orbitals -- 1.11 Linear Vector Space and Matrix Representation -- 1.11.1 Dirac's Ket and Bra Notations -- 1.12 Atomic Units -- 1.13 Approximate Methods of Solution of Schrödinger Equation -- 1.13.1 Perturbation Theory -- 1.13.2 Variation Method -- 1.14 Molecular Symmetry -- 1.14.1 Symmetry Elements -- 1.14.2 Symmetry Point Groups -- 1.14.3 Classification of Point Groups -- 1.14.4 Representation of Point Groups and Character Tables -- 1.14.4.1 Symmetry of Normal Vibrations of Water Molecule -- 1.14.4.2 Symmetry of Electronic Orbitals of Water Molecule -- 1.14.5 Symmetry Properties of Eigenfunctions of Hamiltonian -- Further Reading -- 2 - Many-Electron Atoms and Self-consistent Fields -- 2.1 Wavefunction of Many-Electron Atoms. , 2.2 Slater Determinants for Wavefunctions -- 2.3 Central Field Approximation -- 2.4 Self-consistent Field (SCF) Approximation-Hartree Theory -- 2.4.1 Hartree-Fock Method -- 2.4.1.1 Generalization of the HF method to a many-electron atom -- 2.4.2 Interpretation of the Eigenvalues of the Fock Operator -- 2.5 Electronic Configuration and Electronic States -- 2.6 Restricted and Unrestricted Wavefunctions -- References -- Further Reading -- 3 - Self-consistent Field Molecular Orbital Theory -- 3.1 Introduction -- 3.2 Born-Oppenheimer Approximation -- 3.3 Chemical Bonding and Structure of Molecules -- 3.4 Molecular Orbitals as Linear Contribution of Atomic Orbitals (LCAO) -- 3.4.1 Molecular Orbital Treatment of H2+ Molecule -- 3.4.2 LCAO-MO Theory for Hydrogen Molecule -- 3.4.2.1 Shortcoming of MO Wavefunctions -- 3.5 VB Theory for Hydrogen Molecule-Heitler-London Model -- 3.5.1 Shortcoming of VB Theory -- 3.6 One-Electron Density Function and Charge Distribution in Hydrogen Molecule -- 3.7 Formation of Molecular Quantum Numbers for Diatomic Molecules -- 3.7.1 Scripts Giving Information on the Wavefunction Symmetry -- 3.8 HF Theory of Molecules -- 3.8.1 HF Formalism -- 3.8.2 Roothan Formalism -- 3.9 Closed-Shell and Open-Shell Molecules -- 3.10 Atomic Orbitals-Their Types and Properties -- 3.11 Classification of Basis Sets -- 3.11.1 Slater-Type Basis Sets -- 3.11.1.1 Minimal Basis Sets -- 3.11.1.2 Split-Valence Basis Sets -- 3.11.1.3 Polarization Basis Sets -- 3.11.2 Gaussian-Type Basis Set -- 3.11.2.1 Minimal and Extended Basis Sets -- 3.11.2.2 Split-Valence Basis Sets -- 3.11.2.3 Polarization Basis Sets -- 3.11.2.4 Diffuse Function Basis Sets -- 3.11.2.5 Correlation Consistent Basis Sets -- 3.11.3 Some Other Basis Sets -- 3.11.3.1 Floating Spherical Gaussian Orbitals -- 3.11.3.2 Plane Wave Basis Sets -- 3.11.4 Basis Set Superposition Error. , 3.12 Quality of HF Results -- 3.12.1 Energetic Predictions -- 3.12.2 Structural Predictions -- 3.12.3 Vibrational Frequencies -- 3.13 Beyond HF Theory -- 3.13.1 CI Method -- 3.13.2 MP Perturbation Theory -- 3.13.3 Multiconfiguration SCF Method (MCSCF-CI) -- 3.13.3.1 CASSCF Method -- 3.13.4 Coupled-Cluster Method -- References -- Further Reading -- 4 - Approximate Molecular Orbital Theories -- 4.1 Introduction -- 4.2 Semiempirical Methods -- 4.2.1 Zero-Differential Overlap (ZDO) -- 4.2.2 Complete Neglect of Differential Overlap -- 4.2.3 Neglect of Diatomic Differential Overlap -- 4.2.4 INDO, INDO/S, CS-INDO -- 4.2.4.1 INDO (Intermediate Neglect of Differential Overlap) -- 4.2.4.2 INDO/S -- 4.2.4.3 CS-INDO -- 4.2.5 Modified INDO (MINDO/3) -- 4.2.6 MNDO (Modified Neglect of Diatomic Overlap) -- 4.2.7 AM1 (Austin Model-1) -- 4.2.8 PM3 (Parameterization Method 3) -- 4.3 Semiempirical Methods for Planar-Conjugated Systems -- 4.3.1 Hückel Theory -- 4.3.2 Extended Hückel Theory -- 4.3.3 Pariser-Parr-Pople Method -- 4.4 Comparative Study of the Performance of Semiempirical Methods -- References -- Further Reading -- 5 - Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) -- 5.1 Introduction -- 5.2 Theoretical Motivation-Thomas-Fermi Model -- 5.3 Formalism of the DFT -- 5.4 Kohn-Sham Equations -- 5.5 LCAO Ansatz in the KS Equations -- 5.5.1 Solution of KS Equations -- 5.6 Comparison between HF and DFT -- 5.7 Exchange-Correlation Functional -- 5.7.1 Local Density Approximation -- 5.7.2 Local Spin Density Approximation -- 5.7.3 Generalized Gradient Approximation -- 5.7.4 Meta-GGA Functional -- 5.7.5 Hybrid Exchange Functionals -- 5.7.6 Selecting the Right Functional for Calculations -- 5.8 Applications and Performance of DFT -- 5.9 Challenges for DFT -- 5.9.1 To Develop a Functional of Nonempirical Nature. , 5.9.2 Need to Improve Description of Transition States and Weak Interactions -- 5.9.3 Delocalization Error and Static Correlation Error -- 5.9.4 Description of Strongly Correlated Systems -- 5.9.5 Challenge of Larger Systems -- 5.9.6 Alternative View of DFT and beyond -- 5.10 Time-Dependent DFT -- 5.10.1 Runge-Gross Theorem -- 5.10.2 Time-Dependent KS Equations -- 5.10.2.1 Steps in TDDFT Calculations -- 5.10.3 Linear Response Theory -- 5.10.4 Few DFT Techniques to Calculate Excitation -- 5.10.5 Matrix Formulation of TDDFT -- 5.11 Approximate Exchange-Correlation Functionals for TDDFT -- 5.11.1 Local and Semilocal Functionals -- 5.11.2 Hybrid Functionals -- 5.11.3 Asymptotic Corrections -- 5.11.4 Optimized Effective Potential (OEP)-Based Functionals -- 5.11.5 Current-Dependent Functionals -- 5.12 Advantages of TDDFT -- References -- Further Reading -- 6 - Electron Density Analysis and Electrostatic Potential -- 6.1 Electron Density Distribution -- 6.2 Population Analysis -- 6.2.1 Mulliken Population Analysis -- 6.2.2 Löwdin Population Analysis -- 6.2.3 Natural Bonding Orbitals (NBO) and Natural Population Analysis (NPA) -- 6.3 Electrostatic Potential -- 6.3.1 Electron Density and ESP Isosurfaces -- 6.4 Analysis of Bonding and Interactions in Molecules -- 6.4.1 Molecular Orbital Analysis -- 6.4.2 Electron Density Analysis -- 6.4.3 Population Analysis -- 6.5 Electrostatic Potential-Derived Charges -- 6.5.1 CHELPG -- 6.5.2 Merz-Kollman-Singh (MKS) -- 6.5.3 Restrained ESP -- References -- Further Reading -- 7 - Molecular Geometry Predictions -- 7.1 Introduction -- 7.2 Potential Energy Surface -- 7.3 Conical Intersections and Avoided Crossings -- 7.4 Evaluation of Energy Gradients -- 7.4.1 Energy Gradients for Hartree-Fock SCF Theory -- 7.4.2 Energy Gradients for DFT -- 7.5 Optimization Methods and Algorithms -- 7.5.1 Basics of Gradient Methods. , 7.5.2 Algorithms for Finding Potential Energy Minima -- 7.5.2.1 Method of Steepest Descent -- 7.5.2.2 Method of Conjugate Gradient -- 7.5.2.3 Quasi-Newton-Raphson Method -- 7.5.2.4 GDIIS Method -- 7.5.3 Transition State Structures -- 7.5.3.1 Quasi-Newton-Raphson Methods for Transition Structures -- 7.5.4 Algorithms for Conical Intersections -- 7.6 Practical Aspects of Optimization -- 7.6.1 Choice of Coordinates -- 7.6.2 Use of Molecular Symmetry -- 7.6.3 Choice of the Starting Geometries and Hessians -- 7.6.4 Choice of the Quantum Chemical Method and Basis Sets -- 7.6.5 Choice of the Convergence Limits -- 7.6.6 Testing the Character of the Stationary Point -- 7.7 Illustrative Examples -- 7.7.1 Geometry Optimization of Cyanocarbene -- 7.7.2 Transition State in Isomerization of Carbonyl Cyanide -- References -- Further Reading -- 8 - Vibrational Frequencies and Intensities -- 8.1 Introduction -- 8.2 Quantum Mechanical Model for Diatomic Vibrator-Rotator -- 8.2.1 Diatomic Anharmonic Oscillator -- 8.2.2 Selection Rules for Harmonic and Anharmonic Oscillators -- 8.3 Vibrations of Polyatomic Molecules -- 8.3.1 Classical Formulation of Molecular Vibrations-Coupled Oscillators -- 8.3.2 Motion in Normal Coordinates -- 8.3.3 Solution of Vibrational Problem in Internal Coordinates-Wilson GF-Matrix Method -- 8.3.4 Quantum Mechanics of Molecular Vibrations -- 8.3.5 Selection Rules for Vibrational Transitions in Polyatomic Molecules -- 8.3.6 Fundamental Bands, Overtones, and Combination Tones -- 8.3.7 Mean Amplitude of Vibration -- 8.3.7.1 Practical Applications of Mean Amplitudes of Vibration -- 8.3.8 Potential Energy Distribution -- 8.3.9 Intensity of Infrared Vibrational Bands -- 8.4 Quantum Chemical Determination of Force Field -- 8.5 Scaling Procedures -- 8.6 Vibrational Analysis and Thermodynamic Parameters. , 8.6.1 Vibrational Partition Function and Vibrational Energy. , English
    Additional Edition: ISBN 9780128034781
    Additional Edition: ISBN 0128034785
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    edoccha_9960074030602883
    Format: 1 online resource (0 p.)
    ISBN: 0-12-803501-3
    Note: Description based upon print version of record. , Front Cover -- Principles and Applications of Quantum Chemistry -- Copyright -- Dedication -- Contents -- List of Figures -- List of Tables -- Biography -- Preface -- Acknowledgment -- 1 - Basic Principles of Quantum Chemistry -- 1.1 Introduction -- 1.2 Particle-Wave Duality -- 1.3 Matrix Mechanics and Wave Mechanics -- 1.4 Relativistic Quantum Mechanics -- 1.5 Schrödinger Wave Equation -- 1.5.1 Time-Independent Schrödinger Wave Equation -- 1.5.2 Schrödinger Equation in Three-Dimensions -- 1.6 Operators-General Properties, Eigenvalues, and Expectation Values -- 1.6.1 Some Operators in Quantum Mechanics -- 1.6.2 Properties of Operators -- 1.6.2.1 Commutation Properties of Linear and Angular Momentum Operators -- 1.7 Postulates of Quantum Mechanics -- 1.8 Hydrogen Atom -- 1.8.1 Solution of Schrödinger Equation for Hydrogen-Like Atoms -- 1.8.1.1 Solution of the φ Equations -- 1.8.1.2 Solution of the θ Equations -- 1.8.1.3 Solution of the Radial Equation -- 1.8.2 The Charge-Cloud Interpretation of Ψ -- 1.8.3 Normal State of the Hydrogen Atom -- 1.9 Atomic Orbitals -- 1.10 Electron Spin -- 1.10.1 Spin Orbitals -- 1.11 Linear Vector Space and Matrix Representation -- 1.11.1 Dirac's Ket and Bra Notations -- 1.12 Atomic Units -- 1.13 Approximate Methods of Solution of Schrödinger Equation -- 1.13.1 Perturbation Theory -- 1.13.2 Variation Method -- 1.14 Molecular Symmetry -- 1.14.1 Symmetry Elements -- 1.14.2 Symmetry Point Groups -- 1.14.3 Classification of Point Groups -- 1.14.4 Representation of Point Groups and Character Tables -- 1.14.4.1 Symmetry of Normal Vibrations of Water Molecule -- 1.14.4.2 Symmetry of Electronic Orbitals of Water Molecule -- 1.14.5 Symmetry Properties of Eigenfunctions of Hamiltonian -- Further Reading -- 2 - Many-Electron Atoms and Self-consistent Fields -- 2.1 Wavefunction of Many-Electron Atoms. , 2.2 Slater Determinants for Wavefunctions -- 2.3 Central Field Approximation -- 2.4 Self-consistent Field (SCF) Approximation-Hartree Theory -- 2.4.1 Hartree-Fock Method -- 2.4.1.1 Generalization of the HF method to a many-electron atom -- 2.4.2 Interpretation of the Eigenvalues of the Fock Operator -- 2.5 Electronic Configuration and Electronic States -- 2.6 Restricted and Unrestricted Wavefunctions -- References -- Further Reading -- 3 - Self-consistent Field Molecular Orbital Theory -- 3.1 Introduction -- 3.2 Born-Oppenheimer Approximation -- 3.3 Chemical Bonding and Structure of Molecules -- 3.4 Molecular Orbitals as Linear Contribution of Atomic Orbitals (LCAO) -- 3.4.1 Molecular Orbital Treatment of H2+ Molecule -- 3.4.2 LCAO-MO Theory for Hydrogen Molecule -- 3.4.2.1 Shortcoming of MO Wavefunctions -- 3.5 VB Theory for Hydrogen Molecule-Heitler-London Model -- 3.5.1 Shortcoming of VB Theory -- 3.6 One-Electron Density Function and Charge Distribution in Hydrogen Molecule -- 3.7 Formation of Molecular Quantum Numbers for Diatomic Molecules -- 3.7.1 Scripts Giving Information on the Wavefunction Symmetry -- 3.8 HF Theory of Molecules -- 3.8.1 HF Formalism -- 3.8.2 Roothan Formalism -- 3.9 Closed-Shell and Open-Shell Molecules -- 3.10 Atomic Orbitals-Their Types and Properties -- 3.11 Classification of Basis Sets -- 3.11.1 Slater-Type Basis Sets -- 3.11.1.1 Minimal Basis Sets -- 3.11.1.2 Split-Valence Basis Sets -- 3.11.1.3 Polarization Basis Sets -- 3.11.2 Gaussian-Type Basis Set -- 3.11.2.1 Minimal and Extended Basis Sets -- 3.11.2.2 Split-Valence Basis Sets -- 3.11.2.3 Polarization Basis Sets -- 3.11.2.4 Diffuse Function Basis Sets -- 3.11.2.5 Correlation Consistent Basis Sets -- 3.11.3 Some Other Basis Sets -- 3.11.3.1 Floating Spherical Gaussian Orbitals -- 3.11.3.2 Plane Wave Basis Sets -- 3.11.4 Basis Set Superposition Error. , 3.12 Quality of HF Results -- 3.12.1 Energetic Predictions -- 3.12.2 Structural Predictions -- 3.12.3 Vibrational Frequencies -- 3.13 Beyond HF Theory -- 3.13.1 CI Method -- 3.13.2 MP Perturbation Theory -- 3.13.3 Multiconfiguration SCF Method (MCSCF-CI) -- 3.13.3.1 CASSCF Method -- 3.13.4 Coupled-Cluster Method -- References -- Further Reading -- 4 - Approximate Molecular Orbital Theories -- 4.1 Introduction -- 4.2 Semiempirical Methods -- 4.2.1 Zero-Differential Overlap (ZDO) -- 4.2.2 Complete Neglect of Differential Overlap -- 4.2.3 Neglect of Diatomic Differential Overlap -- 4.2.4 INDO, INDO/S, CS-INDO -- 4.2.4.1 INDO (Intermediate Neglect of Differential Overlap) -- 4.2.4.2 INDO/S -- 4.2.4.3 CS-INDO -- 4.2.5 Modified INDO (MINDO/3) -- 4.2.6 MNDO (Modified Neglect of Diatomic Overlap) -- 4.2.7 AM1 (Austin Model-1) -- 4.2.8 PM3 (Parameterization Method 3) -- 4.3 Semiempirical Methods for Planar-Conjugated Systems -- 4.3.1 Hückel Theory -- 4.3.2 Extended Hückel Theory -- 4.3.3 Pariser-Parr-Pople Method -- 4.4 Comparative Study of the Performance of Semiempirical Methods -- References -- Further Reading -- 5 - Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) -- 5.1 Introduction -- 5.2 Theoretical Motivation-Thomas-Fermi Model -- 5.3 Formalism of the DFT -- 5.4 Kohn-Sham Equations -- 5.5 LCAO Ansatz in the KS Equations -- 5.5.1 Solution of KS Equations -- 5.6 Comparison between HF and DFT -- 5.7 Exchange-Correlation Functional -- 5.7.1 Local Density Approximation -- 5.7.2 Local Spin Density Approximation -- 5.7.3 Generalized Gradient Approximation -- 5.7.4 Meta-GGA Functional -- 5.7.5 Hybrid Exchange Functionals -- 5.7.6 Selecting the Right Functional for Calculations -- 5.8 Applications and Performance of DFT -- 5.9 Challenges for DFT -- 5.9.1 To Develop a Functional of Nonempirical Nature. , 5.9.2 Need to Improve Description of Transition States and Weak Interactions -- 5.9.3 Delocalization Error and Static Correlation Error -- 5.9.4 Description of Strongly Correlated Systems -- 5.9.5 Challenge of Larger Systems -- 5.9.6 Alternative View of DFT and beyond -- 5.10 Time-Dependent DFT -- 5.10.1 Runge-Gross Theorem -- 5.10.2 Time-Dependent KS Equations -- 5.10.2.1 Steps in TDDFT Calculations -- 5.10.3 Linear Response Theory -- 5.10.4 Few DFT Techniques to Calculate Excitation -- 5.10.5 Matrix Formulation of TDDFT -- 5.11 Approximate Exchange-Correlation Functionals for TDDFT -- 5.11.1 Local and Semilocal Functionals -- 5.11.2 Hybrid Functionals -- 5.11.3 Asymptotic Corrections -- 5.11.4 Optimized Effective Potential (OEP)-Based Functionals -- 5.11.5 Current-Dependent Functionals -- 5.12 Advantages of TDDFT -- References -- Further Reading -- 6 - Electron Density Analysis and Electrostatic Potential -- 6.1 Electron Density Distribution -- 6.2 Population Analysis -- 6.2.1 Mulliken Population Analysis -- 6.2.2 Löwdin Population Analysis -- 6.2.3 Natural Bonding Orbitals (NBO) and Natural Population Analysis (NPA) -- 6.3 Electrostatic Potential -- 6.3.1 Electron Density and ESP Isosurfaces -- 6.4 Analysis of Bonding and Interactions in Molecules -- 6.4.1 Molecular Orbital Analysis -- 6.4.2 Electron Density Analysis -- 6.4.3 Population Analysis -- 6.5 Electrostatic Potential-Derived Charges -- 6.5.1 CHELPG -- 6.5.2 Merz-Kollman-Singh (MKS) -- 6.5.3 Restrained ESP -- References -- Further Reading -- 7 - Molecular Geometry Predictions -- 7.1 Introduction -- 7.2 Potential Energy Surface -- 7.3 Conical Intersections and Avoided Crossings -- 7.4 Evaluation of Energy Gradients -- 7.4.1 Energy Gradients for Hartree-Fock SCF Theory -- 7.4.2 Energy Gradients for DFT -- 7.5 Optimization Methods and Algorithms -- 7.5.1 Basics of Gradient Methods. , 7.5.2 Algorithms for Finding Potential Energy Minima -- 7.5.2.1 Method of Steepest Descent -- 7.5.2.2 Method of Conjugate Gradient -- 7.5.2.3 Quasi-Newton-Raphson Method -- 7.5.2.4 GDIIS Method -- 7.5.3 Transition State Structures -- 7.5.3.1 Quasi-Newton-Raphson Methods for Transition Structures -- 7.5.4 Algorithms for Conical Intersections -- 7.6 Practical Aspects of Optimization -- 7.6.1 Choice of Coordinates -- 7.6.2 Use of Molecular Symmetry -- 7.6.3 Choice of the Starting Geometries and Hessians -- 7.6.4 Choice of the Quantum Chemical Method and Basis Sets -- 7.6.5 Choice of the Convergence Limits -- 7.6.6 Testing the Character of the Stationary Point -- 7.7 Illustrative Examples -- 7.7.1 Geometry Optimization of Cyanocarbene -- 7.7.2 Transition State in Isomerization of Carbonyl Cyanide -- References -- Further Reading -- 8 - Vibrational Frequencies and Intensities -- 8.1 Introduction -- 8.2 Quantum Mechanical Model for Diatomic Vibrator-Rotator -- 8.2.1 Diatomic Anharmonic Oscillator -- 8.2.2 Selection Rules for Harmonic and Anharmonic Oscillators -- 8.3 Vibrations of Polyatomic Molecules -- 8.3.1 Classical Formulation of Molecular Vibrations-Coupled Oscillators -- 8.3.2 Motion in Normal Coordinates -- 8.3.3 Solution of Vibrational Problem in Internal Coordinates-Wilson GF-Matrix Method -- 8.3.4 Quantum Mechanics of Molecular Vibrations -- 8.3.5 Selection Rules for Vibrational Transitions in Polyatomic Molecules -- 8.3.6 Fundamental Bands, Overtones, and Combination Tones -- 8.3.7 Mean Amplitude of Vibration -- 8.3.7.1 Practical Applications of Mean Amplitudes of Vibration -- 8.3.8 Potential Energy Distribution -- 8.3.9 Intensity of Infrared Vibrational Bands -- 8.4 Quantum Chemical Determination of Force Field -- 8.5 Scaling Procedures -- 8.6 Vibrational Analysis and Thermodynamic Parameters. , 8.6.1 Vibrational Partition Function and Vibrational Energy. , English
    Additional Edition: ISBN 0-12-803478-5
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV023601457
    Format: XI, 608 S. , Ill., graph. Darst.
    Edition: 2., erw. Neuaufl.
    In: Buch
    Language: German
    Subjects: Computer Science
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    b3kat_BV023601458
    Format: 1 CD-ROM , 12 cm
    Edition: Erw. Neuaufl., 1. Aufl.
    In: CD-R
    Language: German
    Subjects: Computer Science
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    almafu_BV011344897
    Format: 328 S. : Ill. , CD-ROM (12 cm)
    Edition: 1. Aufl.
    ISBN: 3-8266-0321-4
    Uniform Title: Web developer's guide to JavaScript & VB Script
    Language: German
    Subjects: Computer Science
    RVK:
    Keywords: JavaScript ; VisualBASIC Script
    Author information: Aitken, Peter G. 1947-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    kobvindex_ZLB12427150
    Format: Medienkombination
    Edition: 1
    ISBN: 3826603214
    Series Statement: ITP online : [Medienkombination: Buch oder CD-ROM oder CD-ROM mit Beilage]
    Language: German
    Keywords: JavaScript ; VisualBASIC Script
    Author information: Aitken, Peter G.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Manning
    UID:
    kobvindex_ZLB35123946
    ISBN: 9781638351566
    Content: " Summary Windows PowerShell in Action, Third Edition is the definitive guide to PowerShell, now revised to cover PowerShell 6. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology In 2006, Windows PowerShell reinvented the way administrators and developers interact with Windows. Today, PowerShell is required knowledge for Windows admins and devs. This powerful, dynamic language provides command-line control of the Windows OS and most Windows servers, such as Exchange and SCCM. And because it's a first-class .NET language, you can build amazing shell scripts and tools without reaching for VB or C#. About the Book Windows PowerShell in Action, Third Edition is the definitive guide to PowerShell, now revised to cover PowerShell 6. Written by language designer Bruce Payette and MVP Richard Siddaway, this rich book offers a crystal-clear introduction to the language along with its essential everyday use cases. Beyond the basics, you'll find detailed examples on deep topics like performance, module architecture, and parallel execution. What's Inside The best end-to-end coverage of PowerShell available Updated with coverage of PowerShell v6 PowerShell workflows PowerShell classes Writing modules and scripts Desired State Configuration Programming APIs and pipelines About the Reader Written for intermediate-level developers and administrators. About the Authors Bruce Payette is codesigner and principal author of the Power-Shell language. Richard Siddaway is a longtime PowerShell MVP, author, speaker, and blogger. Table of Contents Welcome to PowerShell Working with types Operators and expressions Advanced operators and variables Flow control in scripts PowerShell functions Advanced functions and scripts Using and authoring modules Module manifests and metadata Metaprogramming with scriptblocks and dynamic code PowerShell remoting PowerShell workflows PowerShell Jobs Errors and exceptions Debugging Working with providers, files, and CIM Working with .NET and events Desired State Configuration Classes in PowerShell The PowerShell and runspace APIs Appendix - PowerShell 6.0 for Windows, Linux, and MacOS"
    Content: Biographisches: " Bruce Payette is a founding member of the PowerShell team at Microsoft. He is codesigner and principal author of the PowerShell language." Biographisches: " Richard Siddaway is a multi-year PowerShell MVP, author, speaker and blogger with many years of experience using PowerShell."
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    b3kat_BV023546584
    ISBN: 3815571642 , 3815572282
    Language: German
    Subjects: Computer Science
    RVK:
    Keywords: World Wide Web ; Web-Seite ; Gestaltung ; HTML ; JavaScript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages