In:
Molecular Oncology, Wiley, Vol. 12, No. 9 ( 2018-09), p. 1513-1525
Abstract:
Classifying indolent prostate cancer represents a significant clinical challenge. We investigated whether integrating data from different omic platforms could identify a biomarker panel with improved performance compared to individual platforms alone. DNA methylation, transcripts, protein and glycosylation biomarkers were assessed in a single cohort of patients treated by radical prostatectomy. Novel multiblock statistical data integration approaches were used to deal with missing data and modelled via stepwise multinomial logistic regression, or LASSO . After applying leave‐one‐out cross‐validation to each model, the probabilistic predictions of disease type for each individual panel were aggregated to improve prediction accuracy using all available information for a given patient. Through assessment of three performance parameters of area under the curve ( AUC ) values, calibration and decision curve analysis, the study identified an integrated biomarker panel which predicts disease type with a high level of accuracy, with Multi AUC value of 0.91 (0.89, 0.94) and Ordinal C‐Index ( ORC ) value of 0.94 (0.91, 0.96), which was significantly improved compared to the values for the clinical panel alone of 0.67 (0.62, 0.72) Multi AUC and 0.72 (0.67, 0.78) ORC . Biomarker integration across different omic platforms significantly improves prediction accuracy. We provide a novel multiplatform approach for the analysis, determination and performance assessment of novel panels which can be applied to other diseases. With further refinement and validation, this panel could form a tool to help inform appropriate treatment strategies impacting on patient outcome in early stage prostate cancer.
Type of Medium:
Online Resource
ISSN:
1574-7891
,
1878-0261
DOI:
10.1002/mol2.2018.12.issue-9
DOI:
10.1002/1878-0261.12348
Language:
English
Publisher:
Wiley
Publication Date:
2018
detail.hit.zdb_id:
2322586-5