Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2010
    In:  Advanced Functional Materials Vol. 20, No. 19 ( 2010-10-08), p. 3217-3234
    In: Advanced Functional Materials, Wiley, Vol. 20, No. 19 ( 2010-10-08), p. 3217-3234
    Abstract: Polymer and hybrid solar cells have the potential to become the leading technology of the 21 st century in conversion of sun light to electrical energy because their ease processing from solution producing printable devices in a roll‐to‐roll fashion with high speed and low cost. The performance of such devices critically depends on the nanoscale organization of the photoactive layer, which is composed of at least two functional materials: the electron donor and the electron acceptor forming a so‐called bulk heterojunction; however, control of its volume morphology still is a challenge. In this context, advanced analytical tools are required that are able to provide information on the local volume morphology of the photoactive layer with nanometer resolution. In this report electron tomography is introduced as the technique able to explore the 3D morphology of polymer and hybrid solar cells and the first results achieved are critically discussed.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages