Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Functional Materials, Wiley, Vol. 28, No. 52 ( 2018-12)
    Abstract: High adhesion and water resistance on skin surfaces are highly demanded properties for wearable and skin‐attachable electronics in various medical applications. Here, stretchable electronics with octopus‐like patterns (OPs) imprinted on a carbon‐based conductive polymer composite (CPC) film are presented. The bioinspired conductive suckers with dome‐like architectures are successfully exploited to sustain weight (500 g) in underwater, wherein this performance is known to be challenging. In addition, the artificial patch allows highly adhesive capabilities under both dry and wet conditions on various surfaces such as silicon (max. 5.24 N cm −2 ) and skin replica (max. 1.89 N cm −2 ) without contamination after detachment with an effortless peel‐off technique. The resulting device with low volumetric ratio of conductive carbon black presents sensitive and reliable piezoresistive responses to lateral strain and vertical pressure. By controlling the ratio of the carbon nanoplatelets in the polymeric matrix, electronic patch demonstrates both detection of electrocardiogram (ECG) and bending motions of wrist in dry and wet environments. Based on the characteristics shown in this work, the proposed electronic patch is a promising approach to realize wearable and skin‐attachable sensor devices for in vitro and in vivo monitoring of various biosignals.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages