Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Functional Materials, Wiley
    Abstract: Natural proteins display organized hierarchical structures and tailored functionalities that cannot be achieved by synthetic approaches, highlighting the increased interest in developing protein‐based materials. Protein self‐assembly allows fabricating sophisticated supramolecular structures from relatively simple building blocks, a strategy naturally employed by amyloid proteins and intrinsically disordered proteins. However, the design of self‐assembled bioinspired materials with multi functionalities is still challenging. Inspired by the natural self‐assembly proteins (such as mussel foot proteins and amyloid proteins), a temperature‐inducible engineering programable hydrogel‐like amyloid nanostructure is developed by using a genetically modular fusion approach. The resulting hydrogel‐like assemblies display outstanding adhesive capacity, high stability, and broad substrate universality. The employed SpyCatcher/SpyTag system allows modifying the hydrogel‐like assemblies with any functional proteins of interest. Owing to their strong adhesive capacity and functional flexibility, such amyloid fibril‐based hydrogel shows advantages in the immobilization of diverse enzymes for highly efficient biocatalysis, fabrication of multi‐layered functional coatings, and construction of functionalized 3D scaffold for cell culture. Overall, a modular and straightforward approach is established to obtain a genetically programable nanostructure platform. The novel hydrogel‐like assemblies described here may be potentially applied to but not limited to synthetic biology, surface/interface engineering, and tissue engineering.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages