Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Functional Materials, Wiley, Vol. 33, No. 7 ( 2023-02)
    Abstract: CO 2 reduction to carbon feedstocks using heterogeneous photocatalysis technique has been deemed as an attractive means of addressing both deteriorating greenhouse effect and depletion of fossil fuels. Nevertheless, deficiency of accessible active sites on the catalyst surface, low CO 2 adsorption rate, and short carrier lifetime retard the photocatalytic CO 2 conversion into hydrocarbon fuels. In this study, the controllable construction of spatially separated directional charge transport pathways over multilayered heterostructured transition metal chalcogenides (TMCs) based photosystems for high‐performance photocatalytic CO 2 ‐to‐syngas conversion are shown. In this scenario, ultrathin non‐conjugated insulating poly(diallyl‐dimethyl‐ammonium chloride) (PDDA) layer are intercalated in‐between TMCs and layered double hydroxide (LDH) and serve as an efficient electron transfer mediator, whilst LDH functions as a hole‐withdrawing regulator, both of which synergistically foster the spatial vectorial charge migration/separation over TMCs, thus endowing the TMCs/PDDA/LDH heterostructures with significantly boosted visible‐light‐driven photoactivity toward CO 2 conversion into syngas. This study can inspire sparkling new ideas to realize fine tuning of charge motion for stimulating solar‐to‐fuel conversion.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages