Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Advanced Functional Materials Vol. 33, No. 28 ( 2023-07)
    In: Advanced Functional Materials, Wiley, Vol. 33, No. 28 ( 2023-07)
    Abstract: Cesium lead triiodide (CsPbI 3 ) inorganic perovskite possesses excellent thermal stability and matched bandgap for silicon‐based tandem photovoltaics. The solution method with high‐temperature annealing process for CsPbI 3 film preparation creates challenges to scalable application and conformal growth on the textured silicon. Although additives can decrease the annealing temperature, it will introduce undesired organic components and increase material cost. Thermal co‐evaporation for CsPbI 3 has intrinsic advantages to overcome these issues, but the vague growth mechanism impedes the photovoltaic device development. In this study, γ‐CsPbI 3 films are directly obtained through co‐evaporation at 50 °C without any additives or high‐temperature post‐annealing. Focusing on the molecular thermodynamic calculations, it is proposed that the unique kinetic energy of evaporated molecules and the in‐situ substrate thermal energy synergistically provide the energy prerequisite for γ‐CsPbI 3 formation. Furthermore, the γ phase stabilization is clarified by the crystal grain size effect with regard to the Gibbs free energy difference between the γ and δ phases, which is adjusted through substrate temperature and evaporation rate. The obtained p‐i‐n device realizes an efficiency of 12.75%, which is the highest value for the thermally evaporated γ‐CsPbI 3 photovoltaics at low temperature without additives. This study deepens the understanding of thermal evaporation process, benefiting to high‐performance CsPbI 3 ‐textured silicon tandem photovoltaics.
    Type of Medium: Online Resource
    ISSN: 1616-301X , 1616-3028
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2029061-5
    detail.hit.zdb_id: 2039420-2
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages