Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Advanced Materials Vol. 30, No. 12 ( 2018-03)
    In: Advanced Materials, Wiley, Vol. 30, No. 12 ( 2018-03)
    Abstract: Artificial synaptic devices that mimic the functions of biological synapses have drawn enormous interest because of their potential in developing brain‐inspired computing. Current studies are focusing on memristive devices in which the change of the conductance state is used to emulate synaptic behaviors. Here, a new type of artificial synaptic devices based on the memtranstor is demonstrated, which is a fundamental circuit memelement in addition to the memristor, memcapacitor, and meminductor. The state of transtance (presented by the magnetoelectric voltage) in memtranstors acting as the synaptic weight can be tuned continuously with a large number of nonvolatile levels by engineering the applied voltage pulses. Synaptic behaviors including the long‐term potentiation, long‐term depression, and spiking‐time‐dependent plasticity are implemented in memtranstors made of Ni/0.7Pb(Mg 1/3 Nb 2/3 )O 3 ‐0.3PbTiO 3 /Ni multiferroic heterostructures. Simulations reveal the capability of pattern learning in a memtranstor network. The work elucidates the promise of memtranstors as artificial synaptic devices with low energy consumption.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1474949-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages